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Preface

The solution of the general interpolation problem has very many applications in numerical analysis and
applied mathematics. However, some time ago, I realized that its possibilities have not been fully
exploited and have even been underestimated, and I began to work on the subject. The concept
underlying the problem is that of biorthogonality which gave its title to this book. It has many unusual
connections and applications to Fourier expansion, projections, divided differences, extrapolation
processes, numerical methods for integrating differential equations or for solving integral equations,
rational approximations to formal power series and series of functions, least squares, statistics, and
biorthogonal polynomials, to name some.

Most of the results given in this book are new and have not even been published in the form of journal
articles. They appear here for the first time. This is the case in particular for the various recurrence
relations given and for the generalizations of the method of moments, the method of Lanczos, and the
biconjugate gradient method. New approximations of Padé-type for series are also described.

The possibilities opened by the concept of biorthogonality have still to be discovered and new
applications as well. Thus, this book will be of interest to researchers in numerical analysis and
approximation theory. However, this does not mean that the material given here is difficult. Almost no
prerequisite are needed and the book can also be used as a text for students.

I hope that this monograph will be useful to many applied mathematicians and will serve as a basis for
new developments and applications.

I would like to thank Professor Zuhair Nashed and Professor Earl Taft, who accepted the book in their
series. | express my gratitude to Professor Jet Wimp for his encouragement during the preparation of the
manuscript. My thanks are also due to Mrs. Frangoise Tailly who carefully typed the manuscript, and
Ms. Maria Allegra of Marcel Dekker, Inc., for their assistance in the production of the book.

CLAUDE BREZINSKI
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1 - INTRODUCTION

Numerical analysis is concerned with the operator equation
Af=Db

where f € E,be F, E and F are vector spaces and A : E —- F . Three
different problems can be treated. They are, by increasing order of
difficulty [123] :

- the direct problem : given A and f, compute b (for example : the
computation of definite integrals)

- the inverse problem : given A and b, compute f (for example : the
resolution of systems of equations)

- the identification problem : given f and b, compute A (for
example : the approximation of functions).

When E and F are infinite dimensional spaces, the solution of the
preceding problems is, in general, impossible. Even when E and/or F are
finite dimensional spaces, their solutions can pose serious difficulties. In
these cases, the initial problem is replaced by an approximate one in
finite dimensional spaces (or in spaces with fewer dimensions)

Anfn = bn

where f € Ep, by € Fp, Ep and Fp are vector spaces of finite dimensions
and An ;En—) Fn.

This approximate problem is called the discretization of the
original problem and the main question is to measure the distance
between the exact solution of the original problem and the exact solution
of the discretized problem (the discretization error) and to study the
convergence when the dimensions of Ejp and F, tend to infinity.

Sometimes, even the discretized problem cannot be solved exactly
as is the case for systems of nonlinear equations. The method used
cannot lead to its exact solution and we have a method's error which
must be also studied.

Finally when using a computer, we are faced to rounding errors
due to the computer's arithmetic.

Of course, the study of these errors needs that the vector spaces
are normed and the study of convergence requires that they are normed
and complete that is that they are Banach spaces. Thus the tools and the
methods of functional analysis play a central réle in numerical analysis
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2 Chapter 2

which was first emphasized by L.V. Kantorovich in 1948. These
questions were discussed by many authors, for example [50, 123].

However, the first step is to replace the original problem by the
discretized one. It turns out that many numerical methods used for this
purpose can be reformulated in the framework of projection methods.
Such methods form a very broad class of methods, as stated by Cryer
[50], especially if they are looked as generalized collocation methods as
in [154].

Our main interest here will be on algorithms for constructing
discretized problems by generalized collocation methods. We shall make
use of the old concept of biorthogonality which can be traced back to the
book of Banach [6] or even before since the special case of biorthogonal
systems of functions can be found, for example, in the treatise of
analysis of Goursat [82] but goes back to the works of Hilbert and others
on Fredholm's integral equations between 1904 and 1910. It seems that
this concept has not yet been fully developed and exploited although a
renewal of interest in biorthogonal polynomials has been recently
observed (see [110] and the references quoted therein). Since the
problem we shall be treating is an algebraic one, we shall not make use
of topology and thus the spaces we shall be dealing with will be vector
spaces unless specified.

2 - PRELIMINARIES

Let E be a vector space on K ( R or € ) and E* its dual (the vector
space of linear functionals on E).

Let us first recall some classical results whose proofs can be found in
[57].

Theorem 1. Let E, be a subspace of dimension n+l of E. If
X0,X1,...,Xn are linearly independent in Eq and if Lo, L1,....Lp are
independent in E®* then the determinant

n
Gn+1 = |Li(x))l im0 ™ 0.

Conversely, if either Xo,...,Xn, Of Lo,....Ln are independent and if Gp+1# 0,
then the other set is also independent.

Since the polynomial case will be important in the sequel, let us
illustrate the preceding theorem and the following ones by such an
example.
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Let E be the space of functions defined on D C and let E, = P p the
vector space of polynomials of degree at most n. xj = zi are independent
in P 5. The functionals L; are defined by Vf e E, Li(f) = f(z;) where zj e D.
Gp+1 is a Vandermonde determinant which is different from zero if and

only if Vi # j, zj # zj.

We shall now have a look at the interpolation problem and begin
with an existence and uniqueness result.

Theorem 2 : Let E; be a subspace of dimension n+1 of E, let xo,...,xn
be independent in Ep and let L,,...,.L, belong to E*. The general
interpolation problem : find Ry e Epsuch that Li(Rp) = wifor i = 0,...,n
has a unique solution for arbitrary values of Wo,...,wn not all zero, if and
only if Lo,....Lp are independent in E*.

Coming back to the polynomial case this is the well known result
stating the existence and uniqueness of the interpolation polynomial
under the necessary and sufficient condition that all the interpolation
points are distinct.

The solution of the general interpolation problem, as stated in
theorem 2, can be expressed in a determinantal form

Theorem 3 : Under the assumptions of theorem 2, the solution Rpof
the general interpolation problem is given by

0 X0 +« Xp
wo Lo(xp)...Lo(x
Ry = "o ree b/ Gy
wnLn(Xo)...Ln(Xn)
where G411 is defined as in theorem 1 and where the determinant in

the numerator of Ry denotes the linear combination of the elements in
its first row obtained by the classical rule for expanding a determinant.

In the polynomial case this is the well-known expression of the
interpolation polynomial as a ratio ot two determinants. Such a
representation is not suitable for practical computations since the
computation of a determinant requires too many arithmetical operations
(k.k! multiplications for a determinant of order k). A more convenient
representation is given by the following theorem
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Theorem 4 : Under the assumptions of theorem 2, there are n+]

uniquely determined independent elements of E, denoted by x'o,...,xn,
such that

Li(x:]-) = 8jj.

Vfe Enwe have

f= 2": Li(f) x.

i=0

For every choice of wy,...,wn, the unique solution Ry of the general
interpolation problem is given by

n
Ru= z Wi x'i.
i=o

In the polynomial case, when L;i(f) = f(z;) it can be proved that

and the above formula is Lagrange's representation of the interpolation
polynomial.

In the preceding formula Vi, x'i is a linear combination of xg,...,Xn

thus leading to the main drawback of Lagrange's formula : if we want to
increase n, we must determine an entirely new set of elements

y'o,...,y'n+1 which are not simply related to the old ones x'o,...,x'n. In the

polynomial case the remedy is classical : it is Newton's formula which

. . . . . * *
consists in constructing simultaneously two new basis, Lg,...Lp and

* * * % . . * *
Xg,.-»Xn, Such that Li(x;) = 8;; but with the difference that Lj and x; are

now linear combinations of only L,,....Lj and xo,...,X;i respectively instead
of the whole set. This remedy enables us to solve the interpolation
problem recursively that is just by adding one new term when passing
from n to n+l, a property known as the permanence property of
Newton's representation (which 1is also characteristic of Fourier
expansions).
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The same trick can be used for the general interpolation problem
via the concept of biorthogonal family which will be now studied.

3 - BIORTHOGONALITY AND APPLICATIONS

The notion of biorthogonality is obviously a generalization of the
notion of orthogonality in an Hilbert space which itself comes from the
notion of orthogonality for functions and polynomials. Chapter VII of
Banach's book of 1932 is devoted to the general notion of
biorthogonality. Although biorthogonality received some attention since
that time, it was only quite recently that the study of biorthogonal
polynomials in connection with some problems in rational approximation
and numerical methods for ordinary differential equations, appeared on
the scene and played a central réle (see, for example, [110]).
Orthogonality of dimension d for polynomials [103] and, equivalently,
1/d-orthogonality [131] were recently the subjects of investigations and
applications. All these new notions of orthogonality for polynomials are
particular cases of the general notion of biorthogonality which also
provides, as we shall see below, a natural and general framework for the
definition and the study of generalizations of many concepts and
methods such as the methods of moments and that of Galerkin, Lanczos'
bi-orthogonalization process, the bi-conjugate gradient method,
projections, Padé approximants of various types, extrapolation methods
for scalar and vector sequences, and so on.

Let us now give the general setting of biorthogonality as explained
by Davis [57]

Theorem § : Let E be an infinite dimensional vector space. Let Xx5,X1,...
be a sequence of elements of E such that Vn, Xo,....Xp are linearly
independent. Let Lo,L1,... be a sequence of linear functionals in E®* such
that vn, Gn+] # 0.

Then there are uniquely determined constants ajjand bij, with ajj# 0
such that

* *
Lo = agolo Xo = Xpo
*® *
L1 = ajolo + a11lLy X1 = bioXxo + X1
3 *
Ly = apolo + a21L1 + az2l2 X2 = b2oxo + b21x1 + X2

with
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* %
Li(xj) = 8ij.
We have
Lo(xo) ... Lo(xi)
*

Xi = ILi.1(xq)..-Li-1(x3i) /Gi
Xo v Xj

Lo(xo) ... Li(xo)
* e wee ner
Li = 1L o(xi.1)... Li(xi-1) [Gis.
Lo .. L;j

n

2 * *
Let En = Span(xo,...,xpn). Then, Vfe Ep, f = L; () x;.
1=0

n

* * Z * %
Let En = Span(Lo,...,Ln). Then, VL e En, L= L(Xl) L|
i=0

*x k%
{Lj, xj} is called a biorthogonal family.

From this result we see that the solution R, of the general
interpolation problem in E, that is to find Ry such that

Li(Ry) = Li(f) for=1=0,...,n
is given by the Newton's formula
n
Ro= 2L,
i=o0

and we have

* « L
Rost = Ra + Loyt ((%nei with Ro = E;%f‘%xo.

We see that we also have
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*® %
Lj(xi) = Li(x}) = 0 for j = 0,...,i-1
and that
*
Li(xi) = Gi+1/Gi
E 3
Li(xj) = 1.
It follows that
n
n « 0 *
Gn+1 = |Li(Xj)| i j=o =] Li(xj)'i,j=o = gLi(Xi)-

Of course, there is a strong connection between interpolation and
biorthogonality. We have

Xj Xo .. Xi-1

* Lo(xi) Lo(xo) .. Lo(xi-1)

Xj

"

/G;

Li-1(xi) Li-1(xo) .. Li-1(xi-1)

0 Xo Xi-1

Lo(xi) Lo(xo) .. Lo(xi-1)
= [Gi+ xi.

Li-1(xj) Li1(x0) .. Li.1(xi-1)

Thus R;.1 = x; - x‘il where Rj.1 satisfies the interpolation conditions
Lj(Ri-1) = Lj(xj) for j = 0,...,1-1
that is
Lj(xi-x:) = Lj(xi) for j = 0,...,i-1

or again

*
Li(xj)=0 for j <i-1.
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As is the case for polynomials we can also define quasi-biorthogonality :

(L, x;} is said to be a quasi-biorthogonal family of order (p,q) € N2 if and
only if

L, (x)=0 for p < i-j and i-j<-q
J
#0 fori-j=pandi-j=-q.

Of course quasi-biorthogonality of order (0,0) reduces to biorthogonality.
Let us assume that

* *
L = ajolo + ... + a;L;
; * *
Xj = bjoxo + ... + bjjxj.

We have
* * ok * &
Li(x)) = bjoLi(xj) + ... + bjLi (xj).

*
The condition Li(x;) = 0 for i = 0,...,j-q-1 implies bj; = ... = bjj.q-1 = 0.
We also have

.k * * * ok
Li(xj) = ajp Lo(xj) + ... + ajiLi (x;)
_ *
and the condition Li(xj) = 0 for j = 0,....,i-p-1 implies ajp = ... = aj,i-p-1 = 0.

* .
The conditions Lij(xj) # O for i = j-q and Li(xj) # O for j = i-p also imply
bjj-q 20 and ajj.p = 0.

Thus we have

N * *
Li = ajjpLip + ... +ajil,

. * *
Xj = bj,j-qXj-q + ... + bjjxj

which shows that L; and ij depend respectively on p+1 and g+l
arbitrary coefficients.

We have



Biorthogonality and Applications

- * - * -
Li(xj) = aji-pLi-p(x) + ... + aj;Li(xj)

* * 3 *
= 8i,i-pbj,j-q Li-p (Xj-q) + ... + ai,i-pbjjLi-p(x))

* * * *
+ &j j-p+1bj,j-q Li-p+1 (Xj-q) + ... + &ji-p+1bjjLi-p+1(x;j)

L I I R i I I R N R I

* % * %
+ ajjbj,j-.q Li(xj-q) + ... + aj,ibjiLi(x;).

Thus Li(xj) = O for p < i-j and i-j < -q.

Moreover when i-j = p we have

Li(xj) = ai,i-pbjj

which implies bjj # 0. We also have when i-j = -q

Li(xj) = aiibjj-q

which means that ajj = O.

3.1 - Orthogonality for polynomials.

If E= P , the vector space of polynomials, and if the functionals L;
are defined by, Vpe P

Lie) = [7p(x) @(x, ki) da(x)

*
then the xi's of theorem 5 are the so-called bi-orthogonal polynomials
introduced by Iserles and Nérsett in [107]. If the functionals L; are not
necessarily defined by an integral but are only known by their moments
Li(xj) = ¢jj for j = 0,1,... we obtain the (formal) bi-orthogonal polynomials
of [26] which generalize those of Iserles and Ngrsett. In general these
orthogonal polynomials do not satisfy a recurrence relationship.

Now if we assume that
Lg+i(xJ) = Lj (xi*+1) fori = 0,1,...

then
Lmnd+i(xJ) = Lj(xj+m) fori = 0,....d-1
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and the bi-orthogonal polynomials obtained are the so-called orthogonal
polynomials of dimension d defined and studied by van Iseghem in
[103]. Such polynomials satisfy an order d+1 recurrence relationship that
is a relation between d+2 consecutive polynomials. These polynomials
are equivalent to the 1/d-orthogonal polynomials introduced by Maroni
[131]) in a different context.

Orthogonal polynomials of dimension d were introduced in the
study of vector Padé approximants [101] which are Padé approximants
approximating simultaneously d power series by rational functions with
a common denominator. Another kind of simultaneous Padé
approximants was introduced by de Bruin [41]. As pointed out in {112]
their denominators are also related to bi-orthogonal polynomials.

When d = 1, the classical formal orthogonal polynomials satisfying
the usual three terms recurrence relationship are recovered [17]. Such

polynomials can be generalized to the case where E is a commutative
algebra. Let ¢ be a linear functional on E. The functionals L; are defined

by, Vfe E
Li(f) = c(xif).
Then
Li(x;j) = c(xixj) = c(xjxi) = Lj(xj)
and we have
ajj = bjjGi/Gi+1.
Thus

%* %k *
c(xixj) = c(xi(bjoxo + ... + bjjXj))

* *
= bjo c(XjXo) + ... + bjj c(xi xj)
* *
= bjo Lo(xi) + ... + bj; Lj(xi)

G o
= —(’}fl (ajoLo + ... + ajLj)(xi)
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G; x % Giy
=L = 58
i |
If the determinants G; are all positive, let us set

*
X = (Gi/Gi+1)1/2 x;.

Then

c(Xi Xj) = 8ij-

Orthogonal polynomials are also known to satisfy the Christoffel-
Darboux identity which is proved from the three-terms recurrence
relationship. An interesting open question was to know whether or not
bi-orthogonal polynomials or vector orthogonal polynomials or those of
de Bruin could satisfy the Christoffel-Darboux identity without satisfying
the usual three-terms recurrence relationship. Thus the first step was to
find a direct proof of the Christoffel-Darboux identity for the wusual
orthogonal polynomials not making use of the recurrence relationship.
Such a proof is given in appendix 1. Then the second step was to try to
extend this proof to more general orthogonal polynomials. This attempt
failed since, as shown in appendix 1, if the Christoffel-Darboux identity
holds for a family of polynomials then this family satisfies a three-terms
recurrence relationship whose coefficients can be deduced from that of
the Christoffel-Darboux identity and thus it is a usual orthogonal family.
This result proves the equivalence between orthogonal polynomials, a
three-terms recurrence relationship (by an extension to the formal case
of Favard's theorem, [17, p. 155]) and the Christoffel-Darboux identity.
However some kind of generalization will be given in section 3.3.
Orthogonality on a curve can also be treated within this framework. We
shall come back to orthogonal polynomials in section 5.4.

3.2 - Interpolation and projection.

Let f € E. We already saw that the solution R, of the general
interpolation problem in Ep, that is to find R, € En = Span (xq,...,Xp)
such that

Li(Rp) = Li(f) = wj fori =0,..,n

is given by Newton's formula
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n
Ra= 2 Lih x

izo

thus leading to the recursive scheme

_Lo®)
Ro= Lo(xo) %o
* *
Rn+1 = Ry + Lo+ 1(f) Xp41.

Thus R, has the form

n

2 aixi
Rp= ajxi.

i=o
*
with a; = L;(f).

*
Often, in practice, the Lj's are much more difficult to obtain than
*

the x;'s. This is the reason why we shall now give another expression for
the aj's.

We have

* *
Rn = a9Xg * ... + ApXp

and the interpolation conditions
Li(Rp) = w; fori =0,...,n,

that 1is

* *
ag Li(xg) + ... + apLi(xg) = Wi i=0,..n.
*
Since Li(xj) = 0 for i < j, this system of equations reduces to a triangular

one

* *
agLli(xg) + ... + 3iLi(xj) = wj i=0,..,n.

Thus, the aj's are independent of the value of n which means that we
have
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*
Rn = Rn-l + an Xn n= 0,1,...

with

Applying L, we obtain

La(Rg) = Lo(Ra-1) + aaLa(xs) = Wa

that is

- wp-Lp(Rp-1)
= *
Ln(xn)

an

which is exactly the scheme given in [21].

*
From the determinantal expressions of Rpj.1 and x, given above we

immediately see that

Wn Ln(xo) .. Ln(xn-1)

Wo Lo(xo) .. Lo(xn-1)
an = /Gn+l-

wn.1 Lp-1(X0) .. Lp-1(xn-1)
Using the Schur complement technique as explained in [28], we have

R, = A,‘,lw,, « Xp

where

Lo(xo) .. Lo(xn)

La(xo) .. Ln(xyp)

Wn = (Wo,.. .,Wn)T

Xn = (XO’-"’XH)To
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-1 . . .
Thus A, Wj is a vector d with components do,...,dy and the notation d
« X, denotes the linear combination dgxo + ... + dpXp.

Since the preceding formula for R, generalizes Newton's, then ap is
a generalization of the classical divided differences. A recursive scheme
for their computation will be given later (see section 4.1).

The interpolation conditions can be written as
Li(Rp-f) =0 i=0,..,n
Moreover, let I, be the linear mapping on E defined by

Iof = Ry.

We have I R, = Ry and thus l,% = I which shows that I; is a projection

on E; and that R, is the truncated formal expansion of f corresponding
* %
to the biorthogonal family (Li, xj} (a generalization of the Fourier

expansion in a Hilbert space). The convergence of such expansions has
been the subject of vaste investigations which shall not be discussed

here (see, for example, [177])).
Let us only mention a generalization of a well known minimization

property showing that, in a Hilbert space, the truncated Fourier series is
the solution of the best approximation problem

Theorem 6 : Vfe E,Vi20
%* %* n *
ILi(f-Rp)l <ILi(f - X aj x;)
j=o0
for all possible choices of ao,...,0n.
Proof : For 0 €1 < n we have
n
* z * * % *
Li(Rp) = &Lj(f) Li(xj) = Li(f)

J=0

and thus the left hand side of the inequality is zero. In the right hand
side we have
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n
* *
Li( X & xj) = a;
j=o

*
which shows that the best possible choice for a; is aj = L;j(f). For i > n the

* * %
inequality reduces to the equality |L;i(f)l =|L;i(f)| since Li(xj) =0 fori>n
>j. e

* * *
Let p = agXxgp + ... + & Xp. Then Li(p) = aj fori = 0,...,k and =0 fori > k.

Up to now we have always been dealing with the interpolation
3

problem in Ep. Similarly the dual interpolation problem in Ep can be

studied. It consists in finding My € E: = Span (L,,...,Ly) such that
Mip(xi) = v; fori1=0,..,n
for arbitrary values of vg,...,vp not all zero.
This dual interpolation problem has a unique solution under the

same assumptions as above. As for R;, M; will be more easily
constructed via the Newton's basis that is M will be written as

* *
Mn = boLo + ...+ ann.

Thus the interpolation conditions are
* %*
boLo(Xj) + ... + byLn(xi) = vj fori=0,..,n.

* *
Since Lj(xj) = 0 for i = 0,...,j-1 and L;(x;j) = 1, the preceding system
reduces to a triangular one (with a unit diagonal)

* *
boLo(xi) + ... + biLi(x;) =0 i=0,..,n.

Thus the bi's are independent of n which means that

*
MI] = Mn-l + anI'l n= Ovl’---

with
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Moreover

&*
Mn(xn) = Mn-1(xn) + bpLn(xn) = vn
and thus
bn = va - Mp.1(xq).

We also have

3
ba = Mp(xp)
and

vn Lo(xn) ... Ln-1(xn)
L .. Lp-1(x
by = | Yo Lol Rt g,
vn-1Lo(Xn-1)...Ln-1(Xn-1)

M, can also be expressed as a ratio of determinants or via the Schur
complement

0 Lo .. Lp

My = - vo Lo(Xg) ...Ln(Xo) / Grs1

VnLo(xn)...Ln(Xn)
T.-1
= (An) Vn* Z,
with A, as above, Vi = (vo,...,vn)T and Zy = (Lo,...,L4)T. The by's are

generalized divided differences in the dual space and we shall give a
recursive scheme for their computation in section 4.1.

If we set vj = L(xj) then by = L(x:).
The dual interpolation conditions can be written as
(Mp-L)(xi) =0 i=0,..,n.
Moreover, let J, be the linear mapping on E* defined by

JnL = Mn.
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We have JuMp = M;p and thus J,% = Jo which shows that J,is a projection

*
on E;. The connection between I, and J; will be studied in section 3.4.

n

t I
Of course M, =ZL(xi)Li can be considered as the truncated formal
i=o

* ®
expansion of L corresponding to the biorthogonal family (Lj, xj}. For such
expansions we have a result similar to theorem 6

Theorem 7 : YVLe E*, Vi20

n

| (L-MD)GD) <L - 2BiLT ) (o)

j=o

for all possible choices of Po,...,Bn.

% * %
Let e=BoLo +...+PBnln. Then e (xj) =B fori=0,.,k and =0 fori > k.
On interpolation and projection see also [171].

3.3 - Kernel.

By analogy with orthogonal polynomials and with the Christoffel-
Darboux identity let us define the kernel Kn(L.f) by

0  Lo(f) ... La(f)

L(x0) Lo(xo) ... Ln(X0)

Kn(L,f) = - /Gn+1.

L(xp)Lo(xpn)...Ln (Xxn)
This is a bilinear form on E* x E such that if w; = Li(f) and v; = L(x;) for
i =0,.,n we have
KH(LW) = Mn

Kn(t,f) = Rn.
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In that case we also have
Kn(L.f) = Mp(f) = L(Rp).

Thus
* *
Ka(L,f) = boLo (f) + ... + by Ln(f)

* %
= agl(Xo) + ... + agL(xp).

* *
As we saw before aj = L;(f) and b; = L(x;) and it follows that

n
KaLf) = 20 L(x}) Li()

i=0

that is

Ka(L.) = Kn.1(L) + L(xn) Ln(f)
with
KL =0.
Using our previous notations we have

-1
Kn(L,f) = (Wn»An Vn)

The following properties hold

* ok
Kn(Li, xj) = &j;

* *
Kn(L, xj) = {(L)(Xj )

* %* &
Let p = ag Xp + ... + apXp. Then, fori = 0,...,n, Li(p) = ;.

Thus

Chapter 3

n=0.1,..
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*
Kn(L.p) = Zai L(xj) = L(p) VLe E*.
i=o

* *» L
Similarly let e= BoLo + ... + PuLn. Then, fori = 0,...,n, e(xj) = B; and thus

Ku(e,5) = 2 BLID = e(O vfe E.

i=0

The first of these properties is noting else than the classical reproducing
property of K, when E is a commutative algebra and when Li(f) = c(x; f).
In that case, Vfe E

Li () = aioLo(f) + .. + aiLi(F)

= C((bxoxo ... + biix;) f)

% % %* G %*
If p=ooxp +...+apxp then Lij(p) = aj= G_I:T c(xi p)

and we obtain

n

Gi_
Kn(Lp) =c(p T o= %i L0 = Lep)
i=o

In the case x; = xi and if L is defined by L(p) = p(t) where p is an
arbitrary polynomial, then the preceding relation is exactly the
reproducing property of Kp. Thus we have extended this property to a
more general setting.

In the case of a commutative algebra and L;(f) = c(xif) we also have
vp, fe E

c(p Kn(e,f)) = c(f Kn(e.0)).
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Let us now give a kind of generalization of the Christoffel-Darboux
identity. It also generalizes the formula given by Iserles and Nérsett
(111] for biorthogonal polynomials.

We set Vx,y € E

Lo(x) .. La+1(x)
Lo(y) .. Ln+1(y)
Hp+1(x,y) = Lo(xo) ... Ln+1(x0)

Lo(xn-1) . Lp+1(xn-1)

Applying Schweins' determinantal formula we obtain

* * * *
Hp+1(x,y) = Gn+2[Ln+1 (y) La(x) - Lp+1 (x) La(y)].

Similarly if we set VL, e € E*

e(Xxo) ... €(Xn+1)
L(xo) .. L{xn+1)
Fn+1(e,L) = Lo(xo) .. Lo(xn+1)

Ln.1(x0) .. Lna1(xn+1)

and if we apply Schweins' identity we obtain

* * * *
Fn+1(e,L) = Gple(xp+1) e(xn) - e(xp+1) L(xp)].

These two formulae correspond to the second Christoffel-Darboux-type
formula given in the above mentioned paper of Iserles and Ngrsett
(111]. Similarly if, in Hp41 and Fp4 the last columns are put in the first
position and if the first rows are placed as last ones, formulae
corresponding to the first Christoffel-Darboux-type formula of [111] are
obtained by application of Sylvester's determinantal formula, (on these
two determinantal formulae, see appendix 3).
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3.4 - The interpolation operator.

In section 3.2 we already defined the linear mappings In and Jy.
Let

In : E > E; such that I(f) = Ry

*
Jo : E* - E, such that J; (L) = My.

From the preceding determinantal formulae we have

0 X0 .. Xp
Lo(e) Lo(x0) .. Lo(xa)
In(e) = - /Gn+1
Ln(s) Ln(xo) .. Ln(xn)

0 Lo .. Lnp
<e,Xo0> Lo(Xo) Ln(Xo)
Jn(o) = - /Gn+l
<o, Xp> Lo(xp) ... Lp(xn)

where <.,.> denotes the duality between E* and E, that is VL € E*, Vf e E,
<L.f> = L(f). In the sequel we shall make use simultaneously of these two
notations according to the circumstances.

V(L,f) € E* x E we have
<L, In(f)> = <Jy(L), £> = Kp(L.D).

Thus, by definition, J, is the dual operator of I, that is

*

Jn = In.

We have
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f Xo . Xn
Lo(f) Lo(x0) ... Lo(xn)
f-In(f) = /G n+1

La(f) La(xo) ... La(xn)

and thus
<Lj, f-In(f)> =0 i=0,..n

which is equivalent to the interpolation conditions

<L, f> = <L;, In()> = <L, Rp> i=0,..,n
Similarly we have
L Lo .. Lp
* L(xo) Lo(x0) .. Ln(x0)
L-In(L) = /Gna1.
L(xp) Lo(xp) ... Ln(xpn)
Thus
%
<L - Iz(L), xi>=0 i=0,..,n

which is equivalent to the dual interpolation conditions

*
<L, xi> = <Iz (L), x;i> = <My, x;> i=0,..,n

* *
Of course, since I, and I, are projections on E, and E; respectively, we

have fori = 0,...,n
xi = In(xj)

*
L; = In(Li).

* ]
As we previously saw, Vfe E, the series ZLi(f)xi is called the formal
i=0

* X
expansion of f corresponding to the biorthogonal family ({Lj.,xj} and we
write [177] :
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(-]
* *
fa ZLi (H)x;.
i=0
We have
n
* *
In(f) = Z Li(f)x;.
i=0

Replacing f by its approximation I5(f) is known as Galerkin's method.
We have

£ L) & L)L

i=n+1

Thus
* -
Xn+1-In(Xp+1) = Xp+1, Li(Xn+1-In(xn+1)) =0 i=0,.,n
and
* * 0 k < n
xi -In(xg) =1 #
Xk k > n.

Of course, similar results hold in E*.

As we saw in the introduction the direct problem consists in
computing the numerical value of L(f). This is the case, for example, in
numerical quadratures. An approximate value of L(f) can be obtained by
two methods :

- replace f by I (f) and compute <L, Io(f)>
* %
- replace L by I, (L) and compute <I,(L),f>.

*
By definition of I,, these two methods lead to the same approximate
value of L(f) that is <L, I (f)>. This is exactly the procedure followed to
obtain interpolatory quadrature formulae such as Newton-Cotes or
Gaussian quadrature rules. This is also the case in Padé-type
approximation as we shall see now.
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Let ¢ be the linear functional on P defined by
c(xi) = ¢j i=0,1,..
and let us consider the formal power series
o0
f(t) = dgitl.
i=o
Then
f(t) = <c, (1-xt)-1>,

Let vy, be an arbitrary polynomial of degree n and let R, be the Hermite
interpolation polynomial of (1-xt)-! at the zeros of vp.

<c, Rp> is a rational function with a numerator of degree n-1 in t
and a denominator of degree n. Its series expansion in ascending powers
of t agrees with that of f up to the degree n-1 that is

f(t) - <c, Rp> = O(t").
<c, Rp> is called a Padé-type approximant of f and is denoted by
(n-1/n)s(t).

If vy is the polynomial of degree n belonging to the family of
formal orthogonal polynomials with respect to c¢ (that is satisfying
c(xi vp(x))=0 for i = 0,...,n-1) then

f(t) - <c, Rp> = O(12n)
and in that case <c, Rp> is called a Padé approximant of f and is denoted
by [n-1/n]g(t). Thus Padé approximants appear as formal Gaussian
quadrature methods for the function (1-xt)-1. This point of view was
developed in [17] (see also [38], which is more recent). If I, is defined as

Rn = In((1-x1)-1)

then

<c, Rp> = <c, In((1-xt)-1)>
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*
The linear functional d = I, (c) is studied in details in appendix 2.

A well known method for estimating the error L(f) - L(Rp) in
Gaussian quadrature methods is Kronrod's procedure [118].
Since Padé approximants are formal Gaussian methods, Kronrod's
procedure can be extended to Padé approximants to estimate their error
[27]. It can now be extended to our general setting.

Let L(Rp) and L(Rp+m) be two approximations of L(f). Then

L(Rp+p)-L(H)
L(Rp)-L(f) ~

L(Rpm)-LRy) _ .
LO-LRy)

If IL(Rp+m) - LDl << |L(Ry) - LA (which is the case if (R;) converges
weakly to f) then L(Rp+m) - L(Rp) is a good approximation of the error
L(f) - L(Rn).

Since

%* %
Rn+i = Rn+i-1 + Ln+i (f) Xn+i
then

m

L(Rn+m) - L(Rp) = 21 Ln:—i(f) L(xn*+i)
1=

which is an extension of the diagonal expansion of the error used by
Belantari [8] for estimating the error in Padé approximation.
3.5 - The method of moments,

This method, studied by Vorobyev [186] in a Hilbert space, is a
particular case of Galerkin's method. We shall now extend it to an

arbitrary vector space E and its dual E*.

The method of moments consists in constructing a linear operator
A, on En.1 such that
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Xn-1 = ApXp-2
In-1(xn) = Apxn-1

or
Xk = Ankxo k =0,..,n-1

In-1(xp) = AgXo.
Let x € Eq-;. Then

X = CoXp + ... + Cn-1Xp-1.
Thus

ApXx = CoAnpXo + .... + Cn-2 ApXp-2 + Cn-1ApXnp-1
= CoX1 + .. #Cp-2Xn-1 + Cn-1In-1(xp) € Ep-1.
Since Ij.1(xp) € Eq.1, we can find ag,...,05.1 such that
In-1(xn) = -@oXp - ... - Gn-1Xn-1
that is

n-1 n
Ao Xo + ... + OApn-1Xp.1 + ln-](Xn) = (Qo] + a]An + ... + an-]An + An )XQ =0

where I is the identity mapping in E.
We have, as we saw in the previous section
Li(xn-In-1(xp)) = 0 i=0,..,n-1
that is
aoLli(xo) + ... + an-1Lj(xn-1) + Li(xn) =0 for i = 0,...,n-1.

This system has a unique solution since its determinant G, is different
from zero.

Let us set

Pa(t) = ag + ajt + ... + ag.1tn-1 + (0,
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We have
Pn(An)Xo = 0OgXg + ... + Qp-1Xp-1 + ln-](Xn) = 0.

Now let A be an eigenvalue of A, and let u be the corresponding
cigenelement. u € Ep.; and thus

U = 8Xg + ... + 8p.1Xp-1.

Then
Apu = agApXg + ... + 3p-1 ApXp-1 = A(apXp + ... + 8n-1Xp-1)
= a9X1 + ... + an-2Xp-1 + an-1In-1(xn)
= 8pX] + ... + @p-2Xp-1 + ap-1(-GoXp - ... - An-1Xp-1)-
Thus

- Godn-1Xo + (30-01an.-1)X1 + ... + (ap-2 - An-13p-1) Xn-1 =
aoAXg + ... + ap-1AXp.1.
Since xo,...,xp-1 are independent in E,;.; we must have
- Op ap-1 = aph
aj - Aj+1 ap-1 = Aj+1A i=0,..,n2

that is, in matricial form

(A 0 0 .. 0 0 “do \(ao\

1 A 0 .. 0 0 “ay aj
0 0 0 . 1 -A -ap2 an|_2
\ 0 o o0 .. . 1 (-an_l-x)}\an-l)
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In order for this system to have a non trivial solution, its determinant
must be zero, that is

Pa(d) =0

which shows that P, is the characteristic polynomial of Ap. Moreover,
ag.1 # 0 since, otherwise, all the a;'s would be zero. Since an
eigenelement is determined apart from a multiplying factor, we can
choose ap.1 = 1 and we have

apn2 =ap-1 +1
aj = aj+1 + aj+1A i=n-3,.,0.

All the other results concerning the method of moments also follow
and, in particular, those concerning the solution of operator equations
(that is the inverse problem of the introduction) [17, pp. 76-77].

We consider the equation f = Ajf+b in Ej.q (that is f, be Ej.q).
Let P and Q be two polynomials related by

1 - P(t) = (1-t) Q(v).

Then the degree of Q is one less than the degree of P, P(1) = 1 and we
have

f = P(Ap)f + Q(Ap)b.

If we choose P as P(t) = Py(t)/Pn(1) where P, is the polynomial defined
above (that is the characteristic polynomial of Ap) then Pp(1) = O since
I-A, is invertible and we have

f = Q(An) b.

If we set
P(t) = ag + ajt + ... + apth

Q(t) = by + byt + ... + by_1n-!

n n
then a; = i/ X, aj with ap = 1 and b; = Zaj for i = 0,...,n-1.
i=o0 j=i+l

Another possible approach is to write
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b = coXxg + ... + Cn-1Xn-1
f =doxg + ... + dp-1Xp-1
where the ci's are solution of the system
L;i(b) = coLi(xo) + .... + cp-1Li(xn-1) i=0,..,n-1.
Thus
doXo + ... + dpn-1Xn-1
= doApXo + ... + dp-2ApXp-2 + dn-1 ApXp-1+ CoXp + ... + Cn-1 Xn-1
= dox1 + .... + dp-2Xp-1 + dn-1In-1(Xn) + coXpo + .... + Cpn-1Xp-1-

Replacing Ij-1(xp) by -aoXo - ... - ap-1xp-1 and equating the coefficients
of Xo,...,Xp-1We obtain

do = -dn-100 + Co
di =dj-1 - dp-10j + ¢;j i=1,..,n-1.
Summing up these relations we get
do + ... +dp.1 =dg + .... +dp.2 -dp-1(@p + ... + 0p-1) + Co + ... + Cp-1
and thus
dn-1 =(co + ... + Cn-1)(0g + ... + 0tp-1 + 1)

and then do, di,...,dn-2 are directly obtained from the preceding
relations.

Now let us solve Apf = b in E,;-1. We choose P and Q related by
1 -P(t) =1t Q).

The degree of Q is one less than that of P and P(0) = 1. If we choose P(t)
= Pp(t)/Pn(0), which is possible since A, is invertible and thus P,(0) = 0
then

f = Q(An)b.

The coefficients aj of P are aj = aj/ao and those of Q are given by
bj = -aj4+1 for i = 0,...,n-1.
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Writing again b and f as above, the second approach leads to
doApXxo + ... + dp.2Apxp.2 + dp-1ApXp-1 = CoXg + -.. + Cpn-1Xn-1
= doxy + ... + dp.2Xp-1 + dp-11n-1(Xp) = CoXo + ... + Cp-1Xn-1
and thus we obtain
dn-1 = €o/ap
and then
di = Ci+1 + dn-1%i+1 i=0,..,n-2.

Let A be an operator in E. x, being given we assume that the x;'s
are formed by

Xi+1 = AXj i=0,1,..

and that xo,...,xn are linearly independent. The operator A, constructed
by the preceding generalization of the method of moments is such that

An= InAIn
which means that Vf e E, Axf = [LAIxf.

We also have

Lo(xo) ... Lo(xn-1) Lo(xn)
. G..
"= | ke) - LaGean) Laatea |/
1 tn-1 tn

A generalization of the method of moments can also be defined in E*. We

*
want to construct a linear operator By on En.1 such that

L] = BnLo
L2 = BnL]
Lp.1 =Baln-2

*
In.1 (Ln) = BnLln-1
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or

Ly = BE Lo k = 0,..,n-1

* n
In-1 (In) = Ba Lo.
*
Let L € Ej-1. Then
L= doLo + ..+ dn-]Ln-].
Thus
BnL = danLo + ..+ dn-ZBnLn.z + dn.]BnLn-]
*
= doL1+ ... + dp.2Lp.1.+ dn-1ln-1 (Lp).

* *®
Since In-1(Lp) € En.1, we can find Bo,...,An-1 such that

In-1(La) = - BoLo - . - Bn-1Ln-1
that is
BoLo + ... + Bn-1Ln-1 + In1(Ln) = (Bol* + B1Bn + ... + Bn.1 Bh | + B Lo=0

where I* is the identity operator in E*.

We have

*
(Lp- In-1(Ly)) (xp)) =0 for 1 = 0,...,n-1

that is

BoLo(Xi) + ... + Ba-1Ln-1(xi) + La(x;) = 0 i=0,..n-1.

This system has a unique solution since its determinant Gpis different
from zero.

Let us set

Qn(t) = Bo+ Bit+ ..+ Bn.lt“'l +tn,
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Let 4 be an eigenvalue of B, and let v be the corresponding

*
eigenelement. v e Ej.1 and thus

v = bQLo + ...+ bn-]Ln-].

Then
Bpnv = bgBplg + ... + bp-1BgLlp-1 = p(bolo + .... + bp-1Ln-1)
L
= boL1 + .... + by.2Lp.1 + by-1ln-1(Ln)
= bol.1 + ... + bp-2Ln.1 + bp-1 (-Bolo - ... - Bn-1Ln-1).
Thus

-Bobn-1Lo + (bo-B1bn-1)L1 + ... + (bn-2 - -Bn-1bn-1)Ln-1

bouLo + ...+ bn-]p.Ln-l.

*
Since Lg,...,Ln-1 are independent in E;.; we must have

-Bobn-1 = bou
bi - Bi+1ba-1 = bi+ 1K i=0,.,n-2,

This system has a non trivial solution if and only if its determinant
is zero, that is

Qn(w) =0
which shows that Q, is the characteristic polynomial of By
Lo(x0) ... Ln(xo)

Qn(t) = Lo(;n-l):'-.-l-n(.;n-l) /Gn'
1 . N

If B is an operator in E* such that Lj41 = BL;j for i = 0,1,..., then the

operator B, constructed by the method of moments is

% *
Bn=ln Bln.
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The operators A, and B, are approximations of the operators A and B
respectively thus solving the identification problem mentioned in the
introduction.

3.6 - Lanczos' method.

In a Hilbert space it is well known that the method of moments
gives rise to Lanczos' method and then to the conjugate and bi-conjugate
gradient methods, see [17 , pp. 79-91, 186-189]. The generalization of
Lanczos' method to our setting will be studied in this section and that of
the bi-conjugate gradient method in the next one.

Let xo € E and Lo € E* be given and let A be a linear operator on
E. We assume that, for i = 0,1,...

Xi+1 = AXxj
Li+1 = A'L;
Xhere A* is the dual of A. E is also assumed to be reflexive so that A** =
We have
<L;, x> = <AL, Aixp> = <Ly, Altixp>
= <A"JLo,Aixp> = <Lj, Aixg> = <Lj,x> = <Ly, xm>

= Ci+j
if m+k = i+j.

Let P, and Qn be the polynomials obtained by the method of
moments applied to (x¢,...,xn) and (L,,...,Lp) respectively. These
polynomials are identical since they are given by the linear systems

aoLi(xO) + ...+ an-]Li(Xn-l) + Ll(x“) =0 0,...,n“1
0,...,n-1,

1
BoLo(xi) + ... + Bn-1Ln-1(xj) + La(xi) = 0 i

Let ¢ be the linear functional on P defined by
c(xk) = ¢y = <L;, x;> with i+j = k.
Then the preceding system can be writen as

0oCi+ ... + ®n-1Ci+n-1 + Ci4n =0 i=0,.n-1
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that is
c(xi(Pp(x)) = 0 fori =0,...,n-1

which shows that {P,} is the family of formal orthogonal polynomials
with respect to ¢. Thus {Pn} satisfies the usual three-terms recurrence
relationship

Pn+1(x) = (x + Bp41)Pn(x) - Cos1Pn-1(x) n = 0,1,...
with
Bne1 = - c(xPE(x))/c(PE(x)) Cos1 = c(PE(x))/c(Pn.2(x)).

Let us express these constants. We have

c(PE(x)) = <Lo, PX(A)xg> = <Pu(A*)Lo, Pa(A)xo>
We set

£4= Pp(A)x,
f,=Py(A*)Lo.

Thus

c(Pf(x)) = <y &> and c(xP2(x) = <fy, AR >,

and it follows that

Bn+1 = - <Ii~n A&n>/<,ian i
Ch+1 = <,i4n , &n> /<£n-1 L n-1>.
We have
Pn+1(A) = (A + Bn+1) Pn(A) - Cn+1Pn-1(A)

and an analogous relation for Ppy; (A*). Applying to x, and L,
respectively, we obtain for n = 0,1,...

£n+l = (A+Bp41) %1 - Ca+1 Qn-l
L4 +1 = (A* + Boe) Lo - Caerflnny

with



Biorthogonality and Applications 35

x1=0¢E 2 = xo
f,=0eE* . =Lo.

The orthogonality relation c(Px (x) Pn(x)) = O for k # n is equivalent to

<'Ln > =0.

Moreover

Lo(xo) ... Lo(xn)

sss s 1Y) *
R0 =Pa(A)xo = |1 | T ) o 1xmy [/G 0 = %o

Xo n Xn

Lo(Xo) es Ln(xo)
U R _Gnsp ¥
n =PaA"Lo = |1 (v LaGiny | /60 = "G L.

Lo .. Ln

Thus Lanczos' method have been generalized in a reflexive vector space
* *
and it constructs, in a particular case, the biorthogonal family (L;, xj}.

Moreover Ap = IhAlL and A: = I: A"'I:.
3.7 - The bi-conjugate gradient method.
We consider the inverse problem

Au = Xo.

Let Ay =1 A I be obtained by the method of moments and let u, be
the solution of

Apqup = Xo.
Let P and G be two polynomials related by
1 - P(t) =t G(v).
Then

un = P(Ap) up + G(Ap)xo
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since
(I-P(Ap)) un = G(Ap) xo = G(Ap) Aqun.

The relation between P and G shows that we must have P(0) = 1. We
shall now make the choice

P(t) = Pn(1)/Pn(0)
where Pp is the polynomial given by the method of Lanczos. The
corresponding polynomial G will now be called Gp. Pa(0) # O since Ap is

invertible and P(0) = 1. Then

up = Gn (An) Xo

which shows that G, (Ap) = A,}’ where Gp is such that
1 - Pa(1)/Pa(0) = t Gg(t).
If we write, as above

Po() = ap + 01t + ... + ap.1th-1 + 0

and
Gn(t) = Yo + ... + Yp-1t0-1
then
Yi = - @i+1/0o i=0,..,n2
Yn-1 = - /o,

In the previous section we saw that the polynomials Pp satisfy a three-
terms recurrence relationship. Let us replace in it, Pn(t) by P,(0) [1-t
Gn(t)]. We obtain

Pn+1(0) [1-t Gp+1()] = (t + Bp+1) Pa(O)[1 - t Gu(t)]
- Cu+1Pn-1(0)[I-t Gp.q(1)].

Replacing t by A and applying the corresponding operator to x, leads to

Pn+1(0)(I-AGp+1(A)Ixo = (A+Bp+1)Pn(0)[I-AQn(A)]Ixo
- Cn+1Pp1(0)[1-AGp 1(A)]x,.
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Since Gp has degree -1 and since xx = Akxy = A:xo for k = 0,...,n-1 then
Gn(A)xo = Gn(Ap)xo = up. Thus the preceding relation becomes

Pn+1(0)[xo-Aup+1] = (A+Bp4+1)Pa(0)[xo-Aup}-Cps1Pn.1(0)[xo-Aup.1]

or, setting rp = Aup - Xp
Pn+1(0) ra+1 = (A + Bn+1) Pn(0)rn - Cas1P0-1(0) 1n-1.
Assuming that A is invertible we obtain
Pn+1(0) un+1 = Pp(0) 1n + Pn(0) Bnsiun - Cos1Pn-1(0) up-1.
Setting pp = -Pp(0)/Pn+1(0) this relation becomes
Un+l == Mnfn - HnBn+tun - Cpst Hn-1 HpUn-1.
But

Pn+1(0) = Bn+1Pn(0) - Cp+1Pn-1(0)
that is

-1
- #n = Bn+1 + Cpsibn-1.

Adding and subtracting u, we get
Un+l = Un - KnTn - HUp(Bp+1 + Pﬁl)un - Cn+1 Hn-1 HnUn-1
= Un - Unfn + UnCn+1 Hn-1Un - Chasd Bn-1 Hp Un-d

= Uun + Hn Vn

with
vp = -In + Un-1Cns1(up-uy-1).

Thus
Up+l = Up + UpVn
Up = Up-1 + Hn-1Vn-1

and
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2
vn = -Tn + Up-1Cns1vn-1.

Let us set Ap = un2.1 Ca+1. We have
Vg = -In + ApVp-1 with v.1 =0

Un+l1 = Un + Hp Vn.

A A
But x n = Pp(A)xo and thus ry = -x 5/Pp(0). Let w and wg be respectively
the solutions of

A‘W = Lo
¥
Aan = Lo.
We have
*
wn = Qn(Apn) Lo
- . A
Th = A*wp - Lo =-Pn(A")Lo/Pn(0) = -L n/Pp(0).
Moreover
Tn+l, Va> = - <I'n+ 100> + Ap<rT 41, Vn-1>
= An <Tnp+l, Vp-1>
since
- A A 2
<In+l, In”> = <Ln+}, X n>/Pn(0) = 0.
Thus

<l:n+], Vp> = A,n...lo d’n+], V.1> = 0.

But
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Tn+l =To + Mg A'vp
V-n = '}n + A.n Qn.l with ;.] =0e E.

. - . -
<Tp+l, Vo> = 0 = <y, Vo > + Mo <A’ Vn, Va>.

Thus
Hn = - <}n- Vn>/<\-'n, Avp>

kn = <}n, rn>/<|-'n.l, In-1>.

This method is a generalization of the bi-conjugate gradient method of

&
Fletcher [70]. It solves simultaneously Apup = %o and A, wp = L.

The determinantal formula given in [17, p. 87] is still valid both for u,
and Wn

with ¢k = Li(xj), i+j = k.

If A can be factorized into the product of two operators then a
geometrical interpretation (in terms of projection or, equivalently,
interpolation) similar to that given in [17, pp. 87-89] can be obtained.
3.8 - Fredholm equation and Padé-type approximants.

We now consider the Fredholm equation

u = tAu + X
where t is a parameter, and the approximate equation
Unp = tAgjup + Xo,

where A, is the operator obtained by the method of moments with x; =
AiXO.
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The solution u can be formally written as a Neumann series
U= Xy + tAxg + 12A2x, + ...
and we have
Li(u) = Li(xo) + Li(x1)t + Lj (x2)t2 + ... = fi(1).
We shall study L;(up). We have
up = (I-tAp)! xo

if t-1 is not an eigenvalue of A,. We formally have

(I-tAp)'t =1 + tA, + tzAr% + ...

and thus
Li(un) = Li(xo) + Li(Anxo)t+...+L;(A,1,1'lxo)tn-l + ...

= Li(xo) + ... + Li(xp-t0-1 + Li(A,',' Xo)th + ...

= L;(u) + O(10),

Let us now look at L; (up) as a function of t and prove that it is a
rational function.

. . . n .
Since Ep.1 has dimension n, then xo, ApXo,...,An Xo are linearly
dependent. Thus 3eo,,...,en, not all zero, such that

Thus, Vk2 0
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Let us set Li(Adxo) = .
We have c(;’n) = Li(Aix,) for j = 0,...,n-1.
Moreover, Vk 2 0
. k+j - (i,n)
1,

XFjLi(An Jx-o)= zpj ck+j =0

j=o j=o0
and

Li(up) = c(ci,'") + é}’“)t + é%’“) t2 + ...

which shows that L;i(up) is a rational function of t with a numerator of
degree n-1 and a denominator of degree n.

Let us now find the expressions of this numerator and of this
denominator.

Any zero t of this denominator makes I-tAp singular, which means
that t-!1 is an eigenvalue of Ap and thus a zero of the polynomial Pp
obtained by the method of moments.

Thus the denominator of Li(up) is

Po(t) = o Pp(t-)).

We have (suppressing the upper indexes i and n for simplicity)

Li(up) Pp(t) = co + (c1+coap-1)t + (c2 + cjap. + Coltn-2)t2 + ...

+ (€1 + Cn2 @n-1 + oo + o] 4 DChujtCnej-10n-1+... 4TI,
j=o0

On the other hand

Pp(x)-Pp(t)
Xx-t

= (a1 + A2X + ... + ap.1x0-2 + x0-1)

+ (a2 + 03X + ... + 0 1x0-3 4 x0-2)t+ ... + (ap.] + X)N-2 + -1,

Let e; be the linear functional on P defined by
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ei(xJ) = Li(x;).

Thus ej(Pa(x)) = 0 for i = 0,...,n-1 which shows that {Pp} is a family of
biorthogonal polynomials in the sense of Iserles and Ngrsett (see section
3.1).

We set
o) = & (RaE:Pa0)
where e; acts on the variable x, and
o = m1QPee),

We have

Pn(x)-Pp(t)

x-t

ei(

) =(x1Co + a2C1+... + 0p.1Cn.2 + Cn-1)

+ (a2co + 03C1+...+0n-1Cn-3+Cn-2)t + ... + (@n-1Co + C1)tN"2 + cotn-1

which shows that
Licun) = G (/F n()

and that

~(i)

Li(up) Pn(t) =Qn (1)

since
Ck = Li(A;‘f Xo) = Li(Akx,) for k = 0,...,n-1
Up to now, we proved that
Li(un) = Li(u) + O(t™).

Thus Lj(up) is the Padé-type approximant (n-1/n) of fi. Let us look more
closely to this approximation property. We have

Li(u) 1‘;n(t) - (l)(t) = Z(C(nlzj + Cn+j- gan 1+ . +Cg )(lo)t“"’j
=0
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with c(_,i) = Li(Aixo) = Li(x;).

Thus

Liw Fa®-Q0= TLitxnsj) + @n1LiCxnsj1) + oo + aoLilx)nti.
j=o

But, as we saw above, ¢j(Pa(x)) = 0 for i = 0,...,n-1, that is
ei(ao + 1X + ... + 0p.1x0-1 + x0) = 0
or
ao Li(xo) + a1Li(x1) + ... + an-1Li(xp-1) + Li(xn) = 0

for 1 = 0,...,n-1. Thus the first term in the error cancels if i < n-1 and we
finally have the approximation property

~ ~(i) { o@n+l) i=0,...,n-1
Li(u) Pu(t) - Qn () = O(tny i3 n.

The vector Padé approximants of J. Van Iseghem [101] are a
particular case of the preceding ones. Their better approximation
properties are due to the relations which hold among the functionals e;
(or, equivalently, the functionals L;)

ei+md(xJ) = ej(xi+m) i=0,..,d-1.
The ordinary Padé approximants correspond to d = 1.
The results given above generalize the interpretation of Padé

approximants due to Hendriksen and Van Rossum [97] which makes use
of oblique projection since

Ar? Xo = Xn - Pn(A)Xo = Xn - (@oXo + ... + Qn-1Xn-1 + Xp) = In-1(xn).
Let us now consider the Fredholm equation in E*
v=tBv + L,
and the approximate equation

Vo = tBnVn + Lo
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where Bjp is the operator obtained by the method of moments in E*. The
solution v can be formally written as a Neumann series

v=Lo+tBLy+ t2B2L, + ...
=Lo+tLy+t2Ly + ...
and we have
v(xi) = Lo(xi) + L1(xj)t + La(xpt? + ... = gi(t).
Let us study vp(xj). We have
vn = (I* - tBy)-1L,

if t-1 is not an eigenvalue of By. Thus, we formally have

(I"l - t.Bn).1 = Il.l + tBn + tzBr%'F .

and

va(xi) = Lo(xi) + BaLo(x()t + By Lo(x)(2 + ..
= Lo(xi) + L1(xi)t + ... + La1(xj)tn-1 + O(1)
= v(xj) + O(t").
Let m; be the linear functional on P defined by
mi(xJ) = Lj(xi)
and let {Qn} be the polynomials obtained by the method of moments in
E*. Then mj(Qpn(x)) = O for i = 0,...,n-1 which shows that {Q,]} is a family

of biorthogonal polynomials.
We set

Qn(x) - Qp(v)

X-t

vl = mic )
Qn() = B Qu(t-!)

v = m1v Dy,

Then we can prove that
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va(xd) = V() / Gact)
and that
- ~(i Oo(tn+1) i =0,...,n-1
v a0 - 700 =1 e ian "
Let us set

0 1 .. xk

1 Lo(xo) ... Lo(xn)
Kn(x.t) = - /Gna+1.

t" Ln(xo) .. Ln(xn)

Then it is easy to see that

ei(Kn(x,t)) = mij(Kn(x,t)) = ti fori = 0,...,n.
We previously related Li(upn) and va(xi) to Padé-type approximants. Let
us now describe a similar relation for up and vy.
We consider again the approximate equation
Up = tAnUn + Xo.
As shown by Vorobyev [186, p. 28] we have
Up = 8oXgo + ... + an-1Xn-1 = (20 + a1A + ... + ap- 1AM Dx,
with
- 1 (10
2o =1 Palr)
. - . ;‘_'__. i=1 1
aj =t aj-1 - Pn(t'l) 1 =1,.,0h-

where the ai's are the coefficients of the polynomial P, obtained by the

method of moments. It can be easily proved by induction that
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tn

a;=t- (ooti + ayti-1 + .. + @) i=0,..,n-1.

Pa(t)
But ﬁn(t) = Qoth + ... + ap-1t + 1 and thus we have

aiPn(t) = (1 + @ 1t + ... + ajsqt0-i-1) i =0,.,n-1.
Setting
Fo(x) = ap + ajx + ... + ap.1x0-1!

it is easy to check that

Fa(x) Pa(x) = 1 + (atn-1 + x)t + (@q-2 + 0p.1x + x20t2 + ...

v+ (0] + 02X + ... + apoxN-2 4 xn-1) n-1,

We set
Qu(x,t) = Fy(x) Pa(t)
and
Qn(x,t) = -] Gn(x’t'l)-
Then
Qux.t) = Pn(’;)-'tp'n(t) .
Thus
ei(Qn(xp)) = 3D
and

ei(Fa(x) = QS (1)/Fa®) = Li(un).

Then GH(A,t)xo/ﬁn(t) is a generalization to a vector space of Padé
approximants.
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We have

Fa(A)xo = Qn(A,0)xo/Pn(t) = aoXo + ... + an-1AD0-1 xg = up
and
Fn(Ap) = (I - tAp)-L.

Let F(x) = (1-xt)-! = 1+xt + x2t2 + ... . We formally have
F(A)Xo = Xo + tAxo + 12A2xy + ... = u

the solution of u = tAu + x,.
We have

F(x) Po(t) = 1 + (ap-1 + Xt + (@2 + ap-1x + X202 + ...

+ (o] + 2% + ... + ap.1xP-2 + xn-1yn-1

+ (0 z (aoxd + ayxi*l 4+ ... + ap. x0*i-1 + xn+j)i.
j=o0
Thus
Pn(t)F(A)xo = Qn(A,)xo + O(tk)
that is
Fn(A)xo = F(A)xo + O(tk).
Let us set

P(x) = (1-xt)-1(1 - BPy(x)/P n(t)).

P is the Hermite interpolation polynomial of (1-xt)-! at the zeros of Pj.
For the usual Padé approximants this is the reason why an
approximation in O(t2k) is obtained instead of an approximation in O(tk).
This increase in the order of approximation is now lost as we saw before.

We have

n

Li(P(A)xo) = Li((I-tA)-1x,) - :t—"" Li((I-tA)-1Py(A)xo).
Pn(t)
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The interpolation property holds if Vj2 0 and for i = 0,...,n-1
LI(AJPn(A)Xo) =0.

For j = 0 we have

*
Li(Pn(A)xo) = Li(aoXo + ... + ®n-1Xp-1 + Xp) = Li(xn) = 0

for i = 0,...,n-1. But a similar property does not hold for j > 0. However,
since it is true for j = O, then

Li(P(A)xo) = Li ((I-tA) 1xo) + O(tn+1).
Since Pn(An) Xo = 0toXg + ... + &p.1Xp-1 + In-1(xp) = O we have
P(An)xo = (I-tAp) 1xo = up.
Of course, similar results can be obtained in E*.

4 - ADJACENT BIORTHOGONAL FAMILIES

In the previous sections we made use of xg,...,Xp and Lo,...,.Lj to

* *
define xp, Ly, Ry, My and K. Of course similar definitions can be given
by starting with L; instead of Lo (that is using Lj,...,Li+n) and with x;j
instead of xo (that is using x;,...,Xj+n). The corresponding elements will be
) 800 RED MU ang KD, The case i = j =
O corresponds to what was done above. The various families {Lr(,"J),
xn(ll’l)} obtained for various values of i and j are called adjacent
biorthogonal families. The aim of this section is to provide recurrence

relations between adjacent x.ﬁ"”, Lnl'J), Rnl’J),M,(,l’)), and K,(,]’J). Such
relations will be useful in applications for their practical computation.
For this purpose we shall make use of two determinantal identities
named after Sylvester and Schweins. They are classical identities which
have been recently proved to hold for determinants whose first (or last)
row (or column) contains elements of a vector space, all the other entries
being scalars [23]. They are given in appendix 3.

respectively denote by xp

The formulae are divided into two classes according whether they
involve quantities whose lower indexes can vary by at most one unity
(one-step formulae) or more (multistep formulae).
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Let us firsi give some definitions. We set
Li(x;) .. Li(Xj+n)

i,j?
" | Lisa-1(x)... Lisn-1(Xj4n)

Xj oee Xj+n

Li(xj) .. Li(xj+n-1)
Dgid)=

Li+n-l(xj)---Li+n-l(xj+n-l)

x S0 - N () ()

We also set

Li(xj) ..  Lisn(x)

Li(xj+n-1) .. Lij+n(Xj+n-1)
Li Li+n

and
(lJ) {)
We have
L&D x D) = 5,
Lisa®Nas]) = N &P (x)) = Dpa 9.
Thus

Liva(xa?) = D /DS

(1+1,J)) -1y @, {)/D(H'ld)

(1)

(2)

49
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Lgl,J+1) +1)

(xj) = (-1» DRty DY (3)
R,(,i’j) is the unique element of Span (x( ’J),... (’J)) satisfying
LpRE™) = wy for p = i,....i+n

where the wp's are given numbers not all zero which can depend on i

(1,j)

and/or j. (Sometimes we shall denote them by wp ™).

M s the unique element of Span (L$™,...L8)) satisfying
M) = v for p = j,...j+n

where the vp's are given numbers not all zero which can depend on i

(i)

and/or j (sometimes we shall denote them by vp ™).

Finally let us set

0 Li(f) .. Lisn(f)
("Q(Lt)- L(xj)  Li(xj) .. Li+n(xj)
L(xj+n) Li(Xj+n) .. Li+n(Xj+n)
and
KDL = - NS i,

As before we have

KD,y = MWD g vp = L(xp)

K0P = RED it wy =10,

and

kKA Dwn = MO0 = LeD),
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4.1 - One-step formulae.

We shall begin by three basic identities which follow directly from
thecasei=j=0.

Rl(li,j) _ Rni-.a') W(l-t-";,;) - L|+n(R41:J?) (l,J) with R-ii’j) =0

Ll-&-n(x(l )) o

a0 < S+ 850 Mg 16D i MED 2o

Fs: K900 = KWwn + LIOLa?) win k0.0 = 0

If we apply Sylvester's identity to N,(,lﬂ) we obtain
(L) gi+Li+1) | \G+1J+1) p () | \G+L) pGj+D)
pi it p{i)

Dividing both sides by , and making use of (2) we get

LD _ L) Liced ) )
*o-1 Ly li¥ 1)) n-1
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(i

Now if we put the last row of Nn+"') as the first one (Nn+1J) becomes

(-1)n Nn(l"')) and if we apply Sylvester's identity, we have

NP plg*D) | G+ plg) - )) pg+l)

(i+1) pid)

Dividing both sides by Dy and using (1), we obtain

) G+ Lien 1(xn1’ ) G
n = G4.j) Xn-
Li+n-1(xn- fl

Let us now apply Schweins' identity to (-1)n Nn(.:‘r'). We obtain
1yn NS DU 2y N P pD) - Cppner NG p )

Dividing by D,(,HI'J) Dﬁl'J) and using (2) we get

. i+1,j) o
(i) _ (1+1,J) Ll(xn ) (i+1,j)
Fe : xn L, !
Using (1) instead of (2) leads to
(i,j)

D D) Lien0n™) | GH)
F7.Xn = Xn
Lisa(x 0700y
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(-J)

Let us now give similar relations for the Ly *'s.

If we apply Sylvester's identity to N'S,lﬂ]), we obtain

Nf,‘;’ D(nl_+11,1+1) =R(;+1,J+1) Dnld) _ﬁ(:;ﬁl) DSHI.J)_

Dividing by D(IH‘JH) n(+l’r]) , we obtain

l)D(1+1 J) (1,]+l)

(l,_]) L(I+I’J+l) D(l!.l) (1+1,]+1)
) (l+l,]+]) r,)
Dn-1 Dn+

§3T1"+1)D(‘1')

Ly

Now if we apply Sylvester's identity to Dn+1])

. +] +1 « s . v . e . .
DI(I:'JI) D(nll J+1) _ Sll,J) Dgl+1,1+1)_ Dg1,1+1)Dg1+1,3)

and then make use of (3) we obtain

(i,j) _(i+1,j+1) i,j+1) (i+1,] (i+l.j+1)
Dpyf Dy O~ pptD ot (x)
(1,) (i+1,j+1) ~ (i,j) _(+1,j+1) ~ (lJ 1)
P pgtii Dn D,(,l J+) Lol (xj)
(i,j) _(i+1,j+1) (i,j) (i+1,j+1) (i,j+1)
Dp+] Dp-1 _ Dy Dy _ Lpl  (x) -1
(L,j+1) _(i+1,j) ~ Gi+D) _@G+1,)) (+1,j+1)
p, T pith) ot pir ) AR
and thus we finally have
.. i,j+1 i+1,j+1 i+l,'+l J+1
L | Ld Do o D - g D (gD

L(ni_,i'+1)( xj) - L(l+1,]+1)(xj)

~(i,j) =(1,j)

In Nn+1 let us put the last row as the first one (we obtain (-1)» Npn4+1)
and then apply Sylvester's identity
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-(I,J) (1+1.J) (i+1.j) pd) | § (i,j) D(ni+1‘j).

n+l Dn-1 n n - n

l+1J) (i,j)

Dividing by Dps1 we get
L) _ @10 | G, D pid) I(l 1.j)

n —(Ln-l ) (1+1|J) (l,j) .
Da-1 Dn+1

In D \l) let us make a transposition, put the last row as the first one (it

becomes (-1)n D Jl) and then apply Sylvester's identity

(-1yDas? Dot V=118 (xjpn) DEHD-(1ynet REH D) D
Thus

oo oGP N0 800
DG l(‘m.n S Dl

LT D (x0m) - LD (x4m)

and we finally obtain

(L) G

(l+1’1)( +n) - (nll)(xj+n)

Fo L(I,J)

Let us now put the last row of N d) as the first one (thus obtaining

(-1)nN nd)) and apply Schweins' identity

-1yn § G pGEI*D g GiAD pGD) oy GIFD D
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Dividing by DS D oY) we get

L ) _ p{i) p (y+1) ij+1) | G+D)

pdF*D p G

Using (3) we obtain

Fro : L0 = (Bf#D) L4 D) LG+D)
L)

. . i,}),
Let us now give recursive formulae for the K,(1 ) S.

(i.j)

In F; let us put wiyp

= Wisn = Lisn() = Lisn(RD),

Moreover KS”J)(L,f) = L(RSI’J)) and Fi| becomes

)

LissRE) L R EP)

Fir KD o= k{Pwn + (i) L)
Lisn(xn ™)
In F2 let us put Vj(.:;il) = Vj+n = L(Xj+n) = MS,"J)(XJ-“,).

Moreover K,(,l"’) (L) = Mnl"') (f) and F2 becomes

55

Fiz :KEVL0 = KDL + MV xjm) - MED (e LD

(H
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We shall now apply Schweins' formula to N,ﬂ’i) (L,f). We get
Gi.j) SGi+1,j i+1,] (i
Nord (L0 N ) = NS o 1yn N8 ()

NS ey NGY o,

Dividing by Dn(l’r') Dn(+11+1"]) we obtain

vedwn NP s Py N
o) of T o ofi
NEPan MRy pftMpld
pi*) bl bl b

But as we saw before

Dﬁ”l’j)Dn(lzi) —L(i”’j)(x

(i,))
x i+15) —Ln j+n+1) - Ln "' (Xj+n+1)
Dn(dl—lj) Dn(+l )

and thus we have

k§Dwn G0 = 5 an Lo o B
- LV xjanan) - B D) KT Loy 800,

and then, by Fg

L8V x50ne1) - D xjine P = Loy - L,

Thus
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kD n 819 - 1w n L

57

,J)(m_

ki Do - G
But
Kgi+l’j)(L,0 = Kx(i'l’.l'j)(]-f) L,(,Hl’j)(f) L()g"'l’j)) and we finally obtain

Fis: K8 @p = kG + L0 Ll

)

Let us now transpose Nn+ﬁl)(L f) and apply Schweins' formula

NP LniD) = N Dw.n Lon®D) « NEFDwn Lodi.

b, ) pli+1)

Dividing by we have

(i,j+1) (1_])
KOV gy LDy - @i+ D o (i), Das?

Dn(llj) D(1J+1)
+ K D@ n L),

But, by (1)
ISR o SO BTEY )
SORRDD SV S )
and, by Fjs
Ljeg(xiri*D)

o L D) = L) L),
Li+n(xn ™) .
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Thus we finally obtain

Fia: K& @0 = K8 Dwn - LD L0

Using Fs this relation becomes

(1,j+1)
i,}) 1,j+1) (1,_|+1) i,j) . Lisp(xp )
Fis: K"’ (LO =Kt (LD + (OL(xg Y ) =T
Li+n(xn )
Using F3, F13 gives
(l’J)(Lf) K[(11+1’J)(Lf) L( (1+1'.]))[ (I‘J)(f) L(1+1‘J)(f)]

and, from Fg9, we obtain

Fie: K @0 = KEDn + Lt D) L OLE D xj4ne)

‘Lr(11+1 ’J)(Xj+n+1 )]

(i.,))

From F3 we obtain the expression of Ly ’(f) and replace it in Fj3. Thus
we have
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Wi - LaSIkDG h - LadtHT Ik Pa g

F17:Kp 7'(Lf) =
Lix$Hy - L §itDy

Similarly F;s5 becomes by replacing L(x,(,I’J)) by its expression from F3

Fis : KOD(L =

+1 1 (i,j)
LI Livnx ) kT V@0 - L8P0 Lin:8Y) Kpli 0

(J) 1 +1
(nLHmﬁ”BLS”’mLHmd” )

Equating F3 and F17 we find

k3w n = k8Pwn « L0 ey - gy,

Using Fg, this relation becomes

Li(xn(:l ]’J))

Lix (1+l,3))

Fio: KOV = K@ g + L)L G

Since K,(,I’J)(L,.) = (I’J) (I’J)(.,f) R("J) the preceding relations for
the K,(, ’J)s give relations for the M,(, A 's and the R(l"')

From Fj3 have
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0 x (l+1,1)

Fa21:Mj

(b)) _ @41, 6oL )

From Fj4 we have

Fa R0 < REHD 000 (G

Far M D ) (654D

From Fjs it follows

Chapter 4

Fa4 . R(LJ) - Rnllj+1) L|+n(xg )) Lr(ll j+1)(f) n],J)
(i,j)
Li+n(xn ™)
() _ 3y +1) |, LisnGg ) i) D)
F25 M ) = M r' 1+0L AN l )) )L ')
i,j)
Litn(xp ™)

From Fj1¢ we obtain
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1’ ’ ’, 1'

Fa6: RaY = RS o P xjenen) - L8 P ixjane 1nad Pyt
." i l’ 1) l’ .g.
F2r: M3 = MO 4 w8 iene ) - LG4 1 L T g i

From F;7 we find

i) LoSDMGFTD L $+1D)M )

F23: Mj

L(x (1,1)) L(x (1+1,J))

From Fi18 we have

1,)
F29 : Rp D _

LS OL IR

L8 DL DR

LDy - LI DL (4D,

From Fj9 it follows

Fip . Rl(]1,.1) - RI(IHIJ)

Ll! Xn+l t

(i,ri) (i+1,j)
La+Y (f)xp
L]( (1+1 !J))
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. . a 1,') ..
L
Fa . Mn|,J) _ M“(1+1.J) . J(sz:-ild) Lex (1+1,J))Ln1,lj)

Li(xn )

Let us now generalize the well-known divided differences. Using F
to generalize the results given in section 3.2 we immediately see that

RUD _ () , G )

with
Li(x;) .. Lj+n(xj)
ar(ll"]) _ coe e oee / Dgl
Li(xj+n-1) .. Li+n(Xj+n-1)
Li(f) . Ljsn()
a,EI’J) is a generalization of divided differences and we shall now make

use of the notation

Li(xj) .. Lij+a(xj)

2 () [XJ Xj4n |f]

(l-J
Li...Li+n / D

Li(Xj+n-1) .. Li+n(Xj+n-1)
Li(f) w.  Ljsn(f)

From F; we see that

[xj"-xj+n |f] Lisyn(f - R(I’J))
i Lisn(xoy

Thus

Xj..-Xj+n B 0 P=1J,...,j+n-1
1. |Xp - 1 —
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We also have

Lni’j)(f)= [ij...xj+n If}

i---Li+n

and thus a,(,l"') =L,(,I’J)(f).

If follows that the recurrence relations between the L,(,I’J)'s (that is
Fg, F9 and Fjg) give recurrence relations for computing the preceding
generalized divided differences. In particular F9 is the well-known
recurrence relation which was generalized by Miihlbach [139] for
interpolation by a linear combination of functions forming a Chebyshev
system (that is such that the denominators do not vanish). We have now
generalized further this formula.

Of course similar results hold in E*. We have

MGD - G | i) )

with
Li(xj) .. Li(Xj+n)
bnlyj) _ oee ver .ee /D S‘],J)-
Li+n-1(xj) .. Li+n-1(Xj+n)
L(xj) L(xj+n)
We shall set
¥ L .. Litn-1
(1) =[ L
Xj - Xj+n-] x'j+n

and call it a dual divided difference.

By F2 we have
MG = [E Lisn-1 ]
(L Mn-f' )(x_]-o-n)- Xj ... Xj+n-1 Xj+n I L.

Moreover
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0 =1,...,i+n-1
[Li Li+n-1 IL ]= P
e *i#n-1 Xj+n ’ P b i,
We also have
o Ly ... Li+n-1
1,
L)) - [ IL
Xj Xj+n-1 Xj4+n

and thus b;(,l"') = L(xgl"')).

(i,j),

It follows that the recurrence relations for the x, “''s (that is F4, Fs,
F¢ and F7) provide recurrence relations for the dual divided differences.

We see that we also have

n
R - T i

k=0

n
I J S ) N (57

k=0
n
i!. .9. i“ ". .’.
LRSD) = M) = kD = 2 LD,
k=0
Let e be an arbitrary linear functional. Then
s ;s Xj - Xj+n-1 Xj+n
et - RIP)) = e [ | f].
Li .. Li+n-1 €
Similarly let p be an arbitrary element of E. Then

. L; Li+n-1
L - M) = [ o L}.

Xj .o XJ+n-] P
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Thus we have obtained generalizations of well known expressions for the
interpolation error in terms of divided differences and dual divided

differences.

These generalized divided differences can be used for Hermite
interpolation in Rk thus leading to a generalization of Newton's recursive
interpolation as presented in [94] (compare with [147]). They also have
applications in recurrence relations for Chebyshevian B-splines [130]. It
is also clear from formula (38b) of [134] that the preceding recursive
formulae could be useful for the algorithmic aspects of surface spline
interpolation, a point mentioned as been not "widely known in spite of
its fundamental simplicity”. Other applications to splines were given in
[122]. All these points and connections deserve further research and, in
particular, the recursive algorithms must be written in full and their
numerical stability must be studied.

4.2 - Multistep formulae

Let us now consider the following ratios of determinants

€ ceeeee- €n+k 1 ... 1
Hl(‘n) ) gi(n) ........ gi(n+k) / gi(n)....... gi(n+k)
gk(n) ........ gk(n+k) gk(n)........ gk(n+k)
gi(n) ........ gi(n+k) 1 e 1
gi'h) _ gi(n) ........ g1(n+k) / gi(n) ........ g1(n+k)
gk(n) ........ gk(n+k) gk(n) ........ gx(n+k)

where the e's are elements of a vector space and the gj(j) are scalars.

Applying Sylvester's identity to the numerators of Hén) and gk(‘?)

and to their common denominator immediately leads to the following
recursive scheme known as the H-algorithm [22, 40] :

Hgn) = en go(.?) = gi(n)
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(n+1) .(n) (n (n+1)
(n) _gk-1.k ‘Hi-]” - k-1 Lx-l _ A
Hy " = (n+1) (n k=12,...:n=0,1,..

Bk-1,k - Bk-1,

(n+1) (n) (n+1) (n+l1)
gk-lk g!-!!- gh-l k gk-l!

) _
g&,l =
gk(-'l].tl) - gk(?)

k=12,..;:n=0]1,.;1=k+1,.

Let us now apply the H-algorithm with the initializations

~(n n ~(n n
RN ORI
and let us denote by ﬁl((n) and gk(?) the results thus obtained. But, since

the H-algorithm involves a recursion on the index k, we have

n
~( l Hk+m and g ék+m k+m+i -

On the other hand ﬁ;(gn) and gk(,) are given by ratios of determinants
similar to those for H|(<n) and g( n) but with the new initializations H( n)

and gn(,?n),” instead of H((,n) and g( n) Thus we have proved that

pm gtk 1 1
(n) (n+k)
(n) g"ﬂ,?,ﬂ gnslz;kl) Em.m+1! .  Em.,m+!
Hg+m= /
n n+k (n) (n+k)
gm(,m)+k gm( m+k) Em,m+k - Bm,m+k

Interchanging m and k, we also have

TICOI T  CALL)) 1. I
n) n+m
Hgﬂf gs(r.llzﬂ - 8 r.ll-:+“11) / gi-kﬂ 8k.k+1
(n) (n+m) (n) (n+m)

gk.k+m - Ek.k+m gk.k+m ..  Bk,k+m
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Similar relations hold for gk(fn), k+m+i by replacing the first row of the

numerators respectively by (g,,ﬁ“,,).“ ” ,gé.nr:fl)) nd (ék L. , ,éi‘;m)

If we set m = 0 in the first relation we recover the definition of H( n)

(and g( )) as given above. In the second relation the choice m = 1 leads
to the H-algorithm. An arbitrary choice of m (in the first formula) or k
(in the second formula) gives a recursive method for computing the

Hl((r:,)n 's directly in terms of the H,,S“)'s (or the Hin)'s) without computing

the intermediate quantities. Such a procedure can be useful when a
singularity occurs, that is a division by zero. Such multistep formulae
were already proposed in [19, 31] in a less general setting.

We also have

+ -
™ an(® . ™D
&n) s(n+m 1)
(n) S‘n) s(mm 1) Agkk+1 ..  Agkk+l
(n) gk.k+1A8k k+1... ABkk+1
Hk+m= / LAA] ten
(n) (n+m-1)
n+m-1 Agk k+m .. Agkk+m
gk(kz-mAgk(klm Aglg k+m )

.. . n .
and a similar relation for gl:(+3|,k+m+i (where A acts on the superscripts).

Applying the extension of Schur complement and formula to a
vector space as given in [28] we have

(n)
k+m=
As(i:ll)m A(Snk+l:1~ll-ll) -1 8(11:1{ 1
i X+
B ar{™W ap{™m Dy,
(n) (n+m 1) (n)
Agk k+m -~ ABk.k+m gk.k+m

The advantage of this formula over the preceding determinantal formula
is that it replaces the computation of determinants by the solution of a
system of linear equations. For k = 0 we obtain a Nuttall-type formula
for the H-algorithm [149].

From the computational point of view, since the Schur complement
is related to the bordering method for solving recursively a system of
linear equations whose dimension grows, the preceding techniques can
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linear equations whose dimension grows, the preceding techniques can

be used to compute the sequence (Hl(‘o)) Once this sequence has been

(0) (n),

obtained (and also similarly the sequence (gk k+1 )) the other Hy "'s can
be obtained by the so-called progressive form of the algorithm [32]
whose stability properties are usually better

(n+1)

n+1 n
goeD . KoL (. 4D
gk-1k

1

The gg?ff,lk) have to be computed by using a special trick, see [39].

We shall now see how to fit some of our previous determinantal
formulae into this framework. Thus the one-step or the multistep H-
algorithm will provide new procedures for their computation.

We saw that

L(xj) Li(xj) ... Lisk(xj)
N 0 Li .. L« Li(x;) ... Li+k(xj)
M;(("J)= L(xj+DLi(Xjs1) ... Lisk(xjs1) | /

Li(xj+k) ... Li+k(Xj+k)

L(xj+k)Li(Xj+k)...Li+k(Xj+k)

We shall now prove that we also have

Mgl,J) M(()l+k",) ) 1
. i+k.j j) (i+k,j)
i _ | 680 gl | e g
i i i+k.i (1,1) (l+k,J)
fj(.:ig,) fjg:k'J) - ek

with MO - —I%%L, and 15 = Lix p)L‘i’ﬂ)— L(xp).

The above numerator can be written as
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1

0

1

foi!
Lj

Li(xj)

L .
0 CoSLitkjs1)-L(xja1) Lo Livk(xja1)-Lixjon)

L(x;

1 1
L(xj) .
O Lyl

Lisk(x)) Lisk

L(x;

L(x;

0 J_‘lLi(Xj) Li(xj+k)-L(xj+k) ... Lirk(x)) Li+k(xj+k)-L(xj+k)

L(x;

L.
Lisk(xj) ~1*k

L(xjp

L .
L(xj+1) ﬁh(xm) “ Lisk(x) Li+k(xj+1)

L .
L(xj+k) %Li(nu) ﬁk—(‘%j—)lank(xyk)

L{xj)  Li(xj)
0 L;

L(x;

Li

Li+k

L(xj+k) Li(xj+k) Li+k(xj+k)

For the denominator we have

1
L(xj)

L(x;

Li(x;) Li(xj+k)-L(xj+k) ...

Li(xj) Li(xj+1)'L(xj+l) " Lijsk(

L(x;
_(‘_'XLJ.)'Li+k(Xj+1)'L(Xj+l)

L(x;
Li+k(xj

1
L(x;

1

+k(xj)

[L(xp]k

L(xj+1) Li(xj+1) .. Lisk(xjs1) Lixp).. Lisk(x))

1

) Li+k(xj+k)-L(Xj+k)

69
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1 1
Li(xj) Ll(xj+1) Li+k(Xj) Ll+k(x_|+])

L(x; L(x;
L—i((";‘;;))ii(xm) E:(%Li«rk(xﬁk)

Li(xj) ... Li+k(x;)
[L(xp]k
Li(xj)...Li+k(xj) °

Li(xj+k) ... Li+k(xj+k)

Thus the new determinantal identity has been proved since, in order to
solve recursively the general interpolation problem in E®, it must be
assumed that L(xj), Li(xj),...,.Li+k(x;) are all different from zero.

(

Consequently, Mk"J) can be recursively computed by the H-algorithm
with the initalizations

(

H,

and we obtain
Y = M),

We also have for the numerator of gk(}%,k
gk(i) .. gk(i+k-1)

gi1(i) .. gi(i+k-1) g1(i) .. gi(i+k-1)

= (k]
gk-1(1) .. gk-1(i+k-1) gk(i) .. gk(i+k-1)
il e

= (-Dk-1

. ko1
fj(:kj) fj(+lk )
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1 1 1
L(x; L(x;

0 ﬁLi(Xjn)-L(xm) mu“q(xm)-ux]‘n) 1)k

L(x; L(x

0 —(-‘LLi(xj) Li(xj+k)-L(Xj4k) - Li+k-l.(xj) Lisk-1(Xj+k)-L(Xj+k)

1 1 1

| L(x) . L(x; . .
Lxje1) Ty Likis1) - T () Livke1(%i+1) (-1)k-1 =

L(x;
- rn_k(_—ll(lxj_)l-i+k-l(xj+k)

L(xj+k) flfl%‘% Li(xj+k) .

L(xj) Li(xp) .. Lisk-1(xj)
) i i+ i - [L(x{)]k-1 .
Li(xj)...Lisk-1(x;)

L(xj+k) Li(xjsk) ... Lisk-1(Xj+k)

Thus
gk =

L(xj) Li(x;) .. Lijsk-1(xp) Li(xj) .. Lij+k-1(xj)

(-1k-1/

L{xj+k) Li(xj+k) - Lisk-1(xj+k) Li(xj4k-1) . Li+k-1(Xj+k-1)

and the H-algorithm reduces to formula Fag of section 4.1. Applying the
H-algorithm to f leads to Fy7 again.

We have
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L) Li(xj) .. Li(xjsk)
. 0 Xj . Xjek Lixp) - Li(xj+k)
Rl(;l"])-_- Li+1(f) Li+1(xj) ... Li+1(xj+k) /
Li+k(xj) ... Lisk(xj+k)

Li+k(f) Lisk(xj) ... Lisk(xj+k)

We shall now prove that we also have

Rgi.j) Rgi,ﬁk) 1 .. 1

) i | | e L eGP

R _ | eir /
ci(.zi(j) e;f.ik’j*.k) Ci(ji(j) Ci(-éiii+k)

. Gi) L; i Lif
with Rol D _ f;l(% xj and epl D _ E;l(g;jl)‘Lp(xj) - Lp(f).

Thus cgl"') =Lp(Ro]’J)) - Lp(f) and the above numerator can be written as

1 1 1
o RGP gl

0 LintRIMYLisi(f) o Lig®RE)L 0 | =

0 Lisk RS -Lisk(®) - Lisk R L)

1 1 1
0 Rf,"l) Rgl,ﬁk)

Lin(® Lit®RSD)y | LR

Li+x(f) Li+k(Rg’j)) Li+k(Rgi’j+k))
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Li(f) Li(x;) .. Li(xj+k)

0 Xj Xj+k k
Li+1(f) Liv1(xj) .. Lis1(xj4k) Li(xgi.l.(lf,)i%x,wk)'

Li+x(f) Lisk(xj) .. Li+k(Xj+k)

For the denominator we have

1 1
Lit®SD)Lia® . Ln®EO) L |
Lie RN Lk (® o LR Lich)

1 1

L ®RSD) L L@

Li+k(Rgi’j)) Li+k(Rgi'j+k))

Li(xj) .. Li(xj+k)
[Li()Ik
Li(xj)...Li(xj+k)

Li+k(xj) ... Lisk(xj+k)

Thus the new determinantal formula is proved since, in order to solve
recursively the general interpolation problem in E, it is assumed that

. i,j )
Li(f), Li(xj),...,Li(xj+k) are all different from zero. R|§ ) can be recursively
computed by the H-algorithm with the initializations

ng) = Rgi’j) and gp(j) = ei+9'j) for i fixed

and we obtain

a)

We also have for the numerator of gy-1
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gk(G) .. gk(+k-1) t,) (i,lj+k-1)
g1G) - g1G+k-1) b e
= (-l)k'] =
gk-1G) - gk-1(+k-1) e . éwfk 2
1 1 1
g | © B®EDILia® L@ D Lo |
0 Link®RED)Lisi® ... Lin®REFDy )
1 1 1
Lint(® LintRSD) . Lisg@EIHEDy
(-1)k-1 =
Lisk(f) L|+k(R(l Dy L k(R(””‘ D
Li(f)  Li(xj) .. Lixj+k-1)
(-1)k-1 [Lj(f))k-1
Li(xj)...Li(xj+k-1)
Li+k(f) Li+k(xj) ... Lisk(Xj+k-1)
Thus
gkgl).k =
Li(f)  Li(xj) .. Li(xjs+k-1) Li(xj) .. Li(xj+k-1)
(-1)k-1 /
Li+k(f) Li+k(xj) ... Lisk(Xjs+k-1) Lisk-1(xj) ... Livk-1(xj4k-1)

= L0 g D’
piid)

and the H-algorithm becomes
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@i+ o oo pld
(. ) (I’J+1)(f) _%]’JTI_)._Rk(Il’J) - L&ld) _%?JT-R(IIV{’I)
R = G DUt (nfn
Lo 2 10 S0
Dx’ Dx’

But Li+k(x£l’1)) = Dk+§l"') /D|((l’1) and the H-algorithm reduces to Fag of

section 4.2. Applying the functional L to this relation leads to F1g again.

Let us mention that an algorithm more economical that the H-

algorithm for the recursive computation of the H( )s is given in [72].
This algorithm can also be used to compute recursively ratios of

determinants similar to those of the H]?'s where the gp(n)'s are replaced
by gm+p(n).

Now, in the H-algorithm, let us set
en = Ln and gi(n) = La(xj+i-1) for j fixed.

Then

gkgu-l— (XJ+k)

(nJ)__}gn)/gkﬁgA

and the rule of the H-algorithm becomes

ORI P e T
Blok+1 Lk (D) 0,
1/gk-1,k "-1/gk-1k

Applying H|(<n) to xj+k yields

(n+1

a.’)( Xi+ k) L( J)(X +kl '

l/gk(l k D llgk(nl)k

Hl(c )(xj+k) = gi 2+1

(n)

Replacing gk k-1 by this expression in the first relation leads to Fg of
section 4.1.
Now, in the H-algorithm, let us set
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en = xp and gj(n) = Lj4j-1(xp) for i fixed.

Setting
1 1
D£n)= Li(xn) .. Li(Xn+k-1)
Li+k-2(xn) .. Li+k-2(Xn+k-1)
we have
D" = (et g Phpi™
(1 n) (l)kH() ﬁ“)
and
Gy HEY Dy
T m) ()
gk-1,k Dk

The rule of the H-algorithm becomes

1,n

o)

(n) (n+1)  (n) (i,n) (n) _(n) (n) (n+1) (i,n+1) (n+1) (n+1)
Dk+]  Bk-1k Bk-2k-1Xk-1 Dk-1/Dk - gk-1 kBk-2.k-1Xk-1 Dg.1 /Dy
(n)(n) (n+1) (n)

Dk Bk-1.k 8k-1,k - Bk-1,k

But, by Sylvester's identity, we have
i,n+1 i,n+1 n+l 1,n
o plntl) _ p) pGn+l) 1) (Gi.n)

(n+1) (n)
Dg.- D 1
k(:l) (nk++11) gk(lyk ) = gl(cnl)k - g1<(n1+13).

or
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On the other hand, we also have

. (n)
D
a1 = L) =Li("™) g ‘;(':F-
k+1

Making use of these two relations, the rule of the H-algorithm finally
becomes

. . ' i,n+1) .
x](‘,,n) _ xé.linﬂ) ) Lwls-l()(k-(li = ) Xk(-lin)
Lisk-1(xk-1 )

which is Fs of section 4.1.
5- APPLICATIONS

5.1 - Sequence transformations

The ratios of determinants studied in the preceding sections and
the recursive algorithms for their computation have applications in the
general interpolation problem and in sequence transformations (which
are extrapolation methods) used in numerical analysis to accelerate the
convergence. Such sequence transformations, which can also be
considered as projection methods, can be used to construct fixed point
iterations, an ancient approach which has recently received much
attention [114, 166, 167, 180, 181, 183]. As we shall see now all these
methods and algorithms are direct applications of the results given in
the previous sections.

Let us begin by interpolation since it was our first objective. The
Neville-Aitken scheme is a well known procedure for the recursive
computation of interpolation polynomials. Instead of interpolating by a
polynomial one may want to interpolate by a linear combination of
functions forming a complete Chebyshev system and try to find the
corresponding generalization of the Neville-Aitken scheme. This was
done by Miihlbach in a series of papers. He first gave a generalization of
divided differences [139] which is now in fact a particular case of that
given in section 4.1. In 1976, Miihlbach [140] obtained a recursive

(n)

scheme for computing the Px “(x) 's given by

PYV(x) = a0g0(X) + .. + akgi(x)
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such that Pl(gn)(ti) = wj for i = n,...,n+k. This algorithm, called the MNA-

algorithm (for Miihlbach-Neville-Aitken) is in fact the H-algorithm with
the initializations

Hgn) = wp go(x)/go(tn) go(.?) = gi(tn)go(x)/go(tn)-gi(x)
and we obtain
H™ = p(M(x).

If we set Ly (xj) = gj(ta), La(f) = f(tg) = wp and if L is defined by
L(x;)=gj(x) where x is fixed then we also have

Py = M™% ).

The other algorithms given in section 4.1 provide other recursive

methods for computing the Pl((n)(x)'s.

The MNA-algorithm can be adapted to treat the general
interpolation problem, see [20] where a subroutine is also given. Various
proofs of the MNA-algorithm can be found in the literature [19, 88, 141].
Since Sylvester's identity is related to Gaussian elimination, to Schur
complements and to the bordering method, the development of the
subject gave rise to several papers on these connections and on some
extensions [74, 76, 77, 144, 148]. The algorithm was extended to
interpolation by rational functions (89, 90, 91, 93, 126] (see also [125]),
to quadratic approximation [124, 127], to vector orthogonal polynomials
[103] and to multivariate interpolation [51, 53, 55, 75, 146, 184]. More
comments and references on these topics can be found in [33].

Let now (Sp) be a sequence of elements of E. We consider the
general interpolation problem of finding

o,n
R(k ) = a.()Sn + ...+ akSn+k

(o,n)

such that Lo(Ry ) =1 and Li(Rl(:o'n)

)=0fori=1,.)k.

We set Li(Sj) = gi(j) and we assume that Vj, go(j) = 1. Thus we have
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0 Sn Sn+k
11 .1
ROM _ 10 gi(n) .. gi(n+k)

1 1
/ gi(n) ... gi(n+k)

gk(n) ... gk(n+k)

0 gk(n) .. gk(n+k)
Sn .ee Sn+k 1 voe 1
_ | 81(n) .. gi(n+k) / gi(n) .. g1(n+k)

gk(n) .. gk(n+k) gk(n) ... gk(n+k)
Thus these ratios of determinants can be recursively computed via the

H-algorithm and we have Hl((n) = R|((0’n).

When (Sp) is a scalar sequence, the preceding ratio of determinants
includes most of the sequence transformations used for accelerating the
convergence of (Sp) and thus the H-algorithm (called the E-algorithm in
this particular case) provides a recursive method for computing the

numbers Hy((n)(denoted by El((n) in this case) without computing the
determinants involved in their definition. This algorithm obtained
independently by several authors [18, 87, 133, 168] is the most general
extrapolation algorithm actually known. It can be used for the
implementation of several famous transformations such as that of
Shanks [170] which was usually implemented by the e-algorithm of
Wynn [189], rational extrapolation for which the p-algorithm was used
[190] and many others [13]. Division by zero or numerical instability in
the algorithm can be avoided (at least partly) by using the multistep
formula given in section 4.2 for the H-algorithm. A subroutine for the E-
algorithm can be found in [20] while other subroutines are given in [14]
(see also [39]). Considerations on the numerical stability of convergence
acceleration methods are discussed in [49].

The E-algorithm can also be recovered by solving the general
interpolation problem in E*, Let L, be the linear functional on the space
of sequences S = (Sp) such that L,(S) = S;. We consider the problem of
finding

m{mo) _ boLg + ... + bxLpsk

such that Ml((n’o)(go) =1 and Ml((n‘o)(gi) = 0 for i = 1,...k, where the gi's
are sequences.
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We assume that Vj, go(j) = 1. Thus we have

Ln Ln+k 1 1

gi(n) ... gi(n+k) gi1(n) .. g1(n+k)
MM < /

gk(n) ... gk(n+k) gk(n) ... gk(n+k)

Ml(‘ 0) is the so-called extrapolation operator which can be recursively
computed by the H-algorithm and we have

MM 5y = g .

The various approaches leading to the E-algorithm have been reviewed
in [33] where many references connected with it are to be found.

In the E-algorithm we have

Sn Sn+k

Agi(n) ... Agi(n+k-1)
(n) gi(n) ... gi(n+k) gin g1
Ek = /

gk(n) ... gr(n+k) Agk(n) .. Agk(n+k-1)

n n ) ) ) ..
Let us set El(( )z e21(( ) and introduce the intermediate quantities
Aaq Aan+k ASn ASn+k

&n) Agi(n) ... Agi(n+k) Agi(n) ... Agi(n+k)
€2k+1= /

Agk(n) ... Agk(n+k) Agk(n) ... Agk(n+k)

where (ap) i1s an arbitrary given sequence. We set
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Aun ves Aan+k
ASn vee ASn+k gl(n+1) gl(n+k)
Agi(n) .. Agi(n+k) - - e
- - - gk(n+1) ... gr(n+k)
(n) Agk-1(n) ... Agk-1(n+k)
Mk = .
AS - AS
n+l n+k Agi(n) .. Agj(n+k-1)
Agi(n+1) .. Agi(n+k)
Agi(n) ... Agx(n+k-1)
Agk-1(n+1) ... Agk-1(n+k)

It was proved in [46] that

(n)
A ol ek
ATy

with én) = éf‘l) = 0 and e(()n) = S;.

Clearly this algorithm is a generalization of Wynn's e-algorithm [189]
and of its first generalisation [11] but it does not reduce to other
rhombus algorithms.

For the moment, no recursive scheme for computing the coefficients
(n) . )
Mk is known. Thus special parameters (a,) have to be chosen so that

. . (n) :
the determinants in px ° can be easily computed.
. . n . . )
As in the e-algorithm, the e2£+)1 are intermediate results without

any meaning and they can be eliminated thus leading to a generalization
to the E-algorithm of Wynn's cross rule for the e-algorithm [191]

(n) (n+1) (n+1) (n)
Mk Kk

Mk+1
+ = +
e(21;() ) egrllc+1) egll(+2) ) egr;:l) -52) gn+l) ez&n) §n+1)

€2



82 Chapter §

Thus this generalized ¢-algorithm fits into the rhombus rules examined
by Cordellier [48] but it does not possess in general the homographic

o : . (n) (n) ...
invariance property since in general px ~ # px4+1  which is a necessary

and sufficient condition for it. An algorithm possessing this property can
be transformed, when necessary, into a more reliable and stable one.
The e-algorithm and its first generalization have the homographic
invariance property.

The E-algorithm (when (S,) is a scalar sequence) or, more generally

the H-algorithm (that is the previous Rl(‘o,n)) have been studied and they
received many applications. On a general theory of extrapolation
methods and the algorithmic aspects see [2, 29, 31, 71, 92, 142, 143,
144, 145]). The E-algorithm have applications to multivariate Padé
approximation [52], to partial Padé approximation [157] and to the
acceleration of double sequences [51, 54, 85] among others. It can be
used for the implementation of composite sequence transformations
[24], for the solution of systems of linear equations in the least squares
sense [20, 138] and for the computation of Stieltjes polynomials [34].

A particular case arises when gij(n) = <y, ASp4i-1> where y € E*; it is
the so-called topological e-algorithm [12] which, in the vector case, is
connected to the bi-conjugate gradient method [17, p. 189].

This algorithm has received much attention. It has applications to fixed
point methods where it provides quadratic convergence without
computing derivatives nor inverting any matrix [40]. Its implementation
was studied in [183] and another application is given in [182].

Depending on the choice for the gij(n)'s in the H-algorithm, several
projection methods can be obtained such as the topological € -algorithm,
the minimal polynomial extrapolation method [45], Henrici's method
[98], the Sp-algorithm ([113] and the reduced rank extrapolation [66,
135]). These methods, which can be used for solving systems of linear or

nonlinear equations and eigenvalues problems, have been recently
studied in a unified framework [166, 173, 174, 175, 176, 180, 181].

Let us only give a brief description of the SB-algorithm obtained by
Jbilou [113]. In this algorithm the following ratios of determinants are
considered
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Sn .es Sn+k 1 .oe 1
S(n) L1(ASp) ... L1(ASqp+x) / L1(ASn) ... L1(ASn+k)
k -
Lx(ASn) ... Lk(ASn+k) Lx(ASn) ... Lk(ASn+k)
ASn wee ASn+k 1 ves 1
B(n) L1(ASp) ... L1(ASp+k) / L1(ASn) ... L1(ASn+k)
k -
Lk(ASn) wos Lk(ASn+k) Lk(Asn) oo Lk(ASlH-k)

It is proved, by a direct application of Sylvester's identity, that it holds

1 1
o Ly sy - L aDysen
k= (n+1) (n)
Lk(Bk-1  ")-Lk(Bk-1)
1 1
(M L@ B - Ly (BrD)pens
P ™ = (n+1)

(n)
Lx(Bx-1 ")-Lk(Bk-1)

n n
with B((, )=ASn and S((, ) = Sp. (On this algorithm, see [114]). Setting
n
g&n.) = Li(Bl(c )) and applying L; to this second relation, leads to the H-
algorithm again.

(i.)

In what precedes (and it will also be the case in what follows) Rg

and My(gl’]) depend on three indexes while Hl(gn) and E]En) only depend on

two. Thus, using the recursive formulae of section 4.1, we now have
possible extensions of the preceding procedures.

Let f : RP 5 RP. Fixed point methods for solving f(x) = 0 usually
produce a sequence of vectors (xp) such that
Xn+1 = Xn- J;l f(xn)

where J, is either the Jacobian matrix of f at the point x, (Newton's
method) or an approximation of it. We have
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Xn I
o=y |/l
0 I
- 5.l .
Xn ¥ |f(Xn) Jn / n

Let us denote by e the ith vector of the canonical basis of R (that is
the ith column of the matrix I) and by y; the ith row of J,. We also set
Li(ej) = (yi, ¢j). Thus

0 €1 .. €p

fi1(xn) Li(er) ... Li(ep)
Xn - Xp+l = - Hn ier ner /'Jn|

fp(xn) Lp(e1) ... Lp(ep)

which shows that xp-xp+1 is the solution of the interpolation problem
Li(xn-Xn+1) = fi(xn) 1=1,.,p.

For example in the case p=1 and y; = R;(xn), which corresponds to
Newton's method in R, we have

L1(xn-Xn+1) = (Xp-Xn+1) q(xn) = f1(xn)
that is

Xn+1 = Xp - f1(xn) / f;(xn)-

If p > 1, the components of y; are the partial derivatives of f; at the point
Xn.

The same interpretation also holds for the other fixed point methods
already mentioned such as Henrici's or the topological e-algorithm. The

case of the conjugate gradient method was already studied in [17, p. 84-
90, 186-189)].

In [18] an extension of the E-algorithm to the vector case was given.
Let Sp, gi(n),...,gk(n) be vectors (or more generaly elements of a vector
space E) and y a vector (or more generally an element of E*). We
consider the ratios of determinants
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Sn gi(n) gk(n)
(y,ASn) (y.ag1(n)) .. (y, Agk(n))

n) ! (¥,ASn4k-1) (¥,.A81(n+k-1)) ... (y,Agk(n+k-1))
(yv.Ag1(n)) .. (y,Agk(n))

(y,Agi1(n+k-1)) .. (y,Agk(n+k-1))

and a similar ratio for gk(,in) by replacing the first column in the

numerator by (gi(n), (y,Agi(n)),....(y,Agi(n+k-1)))T.(.,.) denotes the duality
product between E and E*. The following recurrence relations were
proved to hold

ES,“) = Sn go(,ril) = gi(n) n=0,1,.;1=1.2,..
@ () GAESY)
Ex ' = Ex.1 - (n gg(-l.k k=12,..;n=0,1,...
(y,Agk-?.k)
n
8@) = g&n?l - (y_,Agj(_ﬂ_,_)_ gk(.n]),k k=12,..:;n=01,..;:i=k+]l,..
(n)
(y.Agk-1,k)

where A acts on the superscript n.

Using the connection between interpolation and biorthogonality
explained in section 3 (just before 3.1) we have

R g, - (M

1 . . .
where Rk(-l’n) is given by the same ratio of determinants as E}En) where
Sn in the first row and first column is replaced by 0 and satisfies the

interpolation conditions
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(1)

LI(R ) = (yv Asn+i-1) 1= ]""vk°

(n)

Of course a similar interpretation holds for the gxi ''s and these ratios of
determinants can be put in the framework of the H-algorithm as seen in
section 4.2. An extension where y is replaced by a sequence (yp) is
studied in [188].

A transformation which can be considered as intermediate between
the H-algorithm and the topological e-algorithm is the G-transformation
[84]. In this transformation we consider the ratios

Sn e Sn+k 1 .ot 1
(n) Cn -« Cn+k / Cn - Cn+k
Cn+k-1 - Cn+2k-1 Cn+k-1 .- Cn+2k-1

where the cp's are scalars and the Sp's elements of a vector space.
Setting

Cn veer Cn+k-1
H -
Cn+k-1 .- Cn+2k-2
1 1
ACn ... ACn+k-1
n) Cn .. Cn+k

ACp+k-1 ... ACn+2k-2
Cn+k-1 « Cn+2k-1

- (n) (n) Hk(")/H(x?)

ré")=H|((")/Hk.1 and sx =

it was proved by Pye and Atchison [160] that

(n+1) (n))G (n )_ Gf(n+1) ) Gx((n) rk(an1+1) /rk(+n1)

(1 - rx+t
Sk£?+1)/5£n) —1+n (n) r‘£n+1)
Tk(+nl Do (+1) =1+ Sk(n) sxgnﬂ)

with é(])]) = Sn, Sgn) = l, rin) =Cn.
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If the H-algorithm is applied with Hf,“) = Sy and g(,n) = Cp+j-1 then

nsn) = (-1)k-1 g(n)k, H( ) - ;((n) and the rule of the H-algorithm is
identical with that of the G-algorithm Moreover if Schweins' formula

and Sylvester's formula are applied to H( n)

(n),

preceding recursive formulae for the rg
(n)

then the G( )s are identical with the e€2x ° given by the topological e-
algorithm but with less arithmetical operations and less storage as
shown in [15]. The rs-algorithm is related to the qd-algorithm since

then we directly obtain the

(n)

's and the sg ’'s. If cp=<y, ASp>

Qk(+nl) =Tk(+nl+]) (n+1)/ (n) (n)

ey = Tk(+2)Sk(+1)/Tk(n+1) D,
Thus
Qk(+nl) =g k+1) [1/g£ k+1 - llgi 1.k

ek(+n1) = 8k£-'=?k+2 [l/gl(:l,]ktll) - 1/8l(cl:'k)+1] .

Thanks to the rs-algorithm and to the connection with formal
orthogonal polynomials many new relations for Shanks' transformation
(that is the scalar e-algorithm) were given in [15]. Of course these
relations also hold for the topological e-algorithm. They can be deduced
from the relations given in sections 4.1 and 4.2.

Finally in [21] some algorithms and ratios of determinants more
directly connected with those of the previous sections were given. First
we consider the following ratio of determinants

y X1 .. Xk

L .. L
Li(y) Li(x1) .. Li(xk) / 1tx1) 1(xk)

Ey =
Le(x) . Ly(xe)
Lk(y) Lk(x1) .. Lk(xk)
and gk, obtained by replacing the first column of the numerator by (x;,

L1(xi),...,Lx(xi))T. It was proved that we have the following recursive
scheme called the RPA (recursive projection algorithm)
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Eo=y, 8., =xi , i21

Ly (Eg.
Ex = Ex-1 - . k>
k=Bl T (1) 861K 0
L -Li )
gk.i = 8k-1.i - Li(gk-1.k) gk-1.k i>k>0.

Of course, due to the connection between interpolation and
biorthogonality, we have

1,1
Ex =y - le-l )
(1,1) . o
where Rgx.1 "€ Span (x ,...,xx) satisfies
1,1 .
LiRe D) = Liy) =1,k

We know, from the previous sections, that
1,1 1,1 1,1 1,1
Rt =R + LK )(y) .

Moreover it is easy to see that xk(.ll’l) = gk-1,k and that L;S.ll’]) (y) =

Lx(Ex-1)/Lx(gk-1,k). Thus both formulae are the same.

Then the following ratios of determinants are considered

xi xi+1 s Xi+k
@ | L1(xi) Li(xis1) - Li(xisk)

ek = /

Lk(xi) Lk(xi+1) ... Lx(xi+k)

Li(xi+1) ... L1(xi+k)

Li(xi+1) ... Lk(xi+k)
and it is proved that the more compact recursive scheme (the CRPA

where C stands for compact) holds

e =x; i20
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. : @
(i) (1% Li(ex. (1+ ) .
ek = ek- i20,kz21.
Li(e (1+1))

We have again

i 1,i+1
619) = i'RlS-l )

(1,i+1)

where Ry € Span(Xj+1,...,Xj+k) satisfies

(1,i+1)

Lj(Rk-1 ) =L (xj) for j=1,.k.

It is easy to check that

Ny
kgek.lz o{i* 1) Ao pt"') (1)
(1+1) = (1K (1 ) -1
Li(ex-1 )
with DEUDED o kL {3 D (i) and thus we finally obtain the
formula of section 4.1
1,i+1 Ji+1 1,i+1 1,i+1
ng-ll ) - IE ) 1((-1 )(Xi)xlg-l ).

These two algorithms (RPA and CRPA) are related to recursive
projection in an inner product space, to Fourier expansion, to Rosen's and
Henrici's methods are shown in [21]. They can be used for implementing
the E-algorithm or another sequence transformation due to Germain-
Bonne [79] or some so-called confluent algorithms [21]. They have been
used also to compute recursively the vector Padé approximants of Van
Iseghem [101] or in some methods for solving systems of linear
equations [121].

The solution of a system of linear equations Ax = b can be

considered as an interpolation problem. Let aj be the ith row of the
matrix A and let us define the functionals L; by

Li(s) = (ai,e).
Then Ax = b is equivalent to
Li{x) =b; fori=1,...,n

where bj is the ith component of the vector b.
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The solution of this interpolation problem can be obtain via the RPA
as explained in [21, sect. 1] and, thus, a method due to Sloboda [178,
179] is recovered if x;is the ith vector of the canonical basis of R (a null
vector Xo is also needed).

Moreover the solution x of the linear system can be expressed as

0 xi ....Xp
ail1 ... ain

b1 ai1 ... a1 01 |

anl .. 8nn
bn an1 ... @nn

Compare with the formula for Newton's method given in section 5.1.

As stated in [1], Sloboda's method (and thus the RPA for the solution
of a system of linear equations) is a particular case of the so-called ABS
method due to Abaffy, Broyden and Spedicato as are also many other
terminating algorithms for solving linear systems.

In [192], Wynn considered the ratios of determinants

wotd = g} ui*?

Xi o Xj+k-1

(i) _

where Hyg and the x;'s are numbers and he proved

Xi+k-1 - Xij+2k-2
that they can be computed by the recursive scheme

w_gl) = oo wc(,l) =

i i+ +2 i+2
W2(kl-22= & )]2 [1/w2 (1 ). l/wzg-z)]-
If we define, in the CRPA, L; by Lj(xj) = xj+j then

(W _ 0

€k = w2k

If we compare the rules of the w-algorithm and of the CRPA we shall
have

e}((i+1) e|(<i+2) (l+2)

(1/ (i)

] = Liar(ei )/ Lisr (et D

)
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which is indeed true by Sylvester's formula and since

Lisi(et)) = (ST D mi?.

The w-algorithm is useful in the computation of a diagonal of the e-
algorithm or in the implementation of the so-called confluent forms of
the €- and p-algorithms. On these questions see [15, 39].

In [21] it was proved that, if we set

QNP (T P R
then
@ L&Dy Gy e
€k = _ (1) €k-1 - €k-1
Lk(ek-1")
with e( 1) = xj, which is exactly Fs.

Finally, in the same paper, the following ratios were considered

Xi - Xi+k 1 . 1
~(i) Li(xi) ... L1(xj+k) Li(xi) ... L1(xj+k)
ek = /

Li(xi) ... Le(Xi+k) Li(xi) ... Ly(xi+k)
which are exactly those considered in the H-algorithm.
It was proved that

o LGl e Ly DT

Leet D) - Lcer V)

~(1)

with eq * = x;.

Since Lk(é",ff%) = élz-)l.k if we set gj(i) = Lj(xi), the preceding algorithm is
the H-algorithm and it can be used for implementing Henrici's sequence
transformation [98].
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Thus almost all the sequence transformations and the corresponding
algorithms which are known fit into our framework and are particular
cases of the results given in the preceding sections. Moreover the
algorithms of sections 4.1 and 4.2 provide other possible recursive
schemes for the implementation of these transformations and are thus
useful in convergence acceleration, orthogonal polynomials, Padé
approximation and fixed point methods. In particular the following
algorithms have or can be studied in our context: E-algorithm, H-
algorithm and Henrici's transformation, RPA and CRPA, composite
sequence transformations for scalar and vector sequences, the secant
method and its various possible generalizations [166], the method of
Pugachev [159], the conjugate and bi-conjugate gradient methods, the
generalized conjugate residual method [67], the method of Arnoldi [165],
the topological e-algorithm and its variants [12], the method of Germain-
Bonne [79, property 12, p. 17], the minimal polynomial extrapolation
[45], the reduced rank extrapolation [66, 159], the generalized minimal
polynomial extrapolation [79], the generalization of Wimp of the
topological E-algorithm [188]. For a review and theoretical results on
these methods see [40, 114, 166, 167, 180, 181]. Least squares
extrapolation as described in [20] and [49] can also be put into this
framework as well as rational interpolation [56].A quite complete
exposition can be found in [39] which also contains subroutines.

§.2 - Linear multistep methods.

We consider the differential equation
y'(x) = f(x, y(x)).

Let us define the following operators

Dg(x) = g'(x)
Eg(x) = g(x+h)
Ag(x) = (E-I) g(x) = g(x+h) - g(x)

where h is a positive parameter (the step size).
It is well known that formally [99]

or

D =3 Log (I+4)

="|t—l
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an identity first given by George Boole in 1859 in his Treatise on
Differential Equations.
Let R(t) = A(t)/B(t) be a rational approximation to Log (1+t). Then the

differential equations Dy(x) = %‘Log (I+A) y(x) = f(x, y(x)) can be

replaced by the approximate equation
A(A)yn = hB(4) fn

where yp is an approximation of the solution y at the point x5 = xo + nh
and fy = f(xn, yn).

If we set A(t) = ap+ ajt + ... + agtk and B(t) = by + byt + ... + bitk, then we
have the following linear multistep method

aoy¥n + a1(E-Dyn + ... + ax(E-Dkyp = h [bofy + bi(E-I)fy + ... + b(E-T)kfy,] .

i,
Since (E-Di = ZC‘, (-1Y Ei-j this can be written in the more familiar

j=o
form
doyn + @1Eyn + ... + akx Ekyy = h [Bofn + B1Efn+...+BxEkfn]
or
Oo¥n + A1¥n+1 + ... + 0k Yn+k = h [Bofn + Bifn+1+...+Bxfn+k]
with
k-i
1 ., . .
ai =7y 'E(-I)J(]+l)...(]+1)aj+; ooty = oo + ot + ...+ agtk
j=o

k-i
1 .
Bi =7 2-DIG+D...G+idbjsi . B =Bo + Bt + ... + Pyt
j=o0

and the convention that (j+1) ... +i) = 1 if i = 0.

Let L be the operator
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k k
L= Y a;Ei -h 3 B ED.
i=0 i=o

It is well known that the linear multistep method has order p if
Li=0 j=0,..p
which corresponds to [136]
R(t) = Log(1+t) + O(tp+1) (t—0).
Clearly p < 2k.

We have L t©=qa(l)
L t=1ta(1) + h(a'(1) - B(1))

and thus the method has order one at least if and only if

a(l) =0
a'(1) = B(1)

which are the usual conditions for the consistency.

It is well known that such a method is stable if and only if the zeros of a
are in the closed unit disc and the zeros of modulus one are simple.

If Bx = O the multistep method is explicit otherwise it is implicit.

We consider the differential equation y' = Ay where Ae @ Re(A) <0
and with the initial condition y(0) = 1. The multistep method is said to
be A-stable if and only if lim yp =0, VA with Re(A) < 0 and Vh > 0. Let

n—ooo

W be the exterior of the closed unit disc in the complex plane W = (z | Izl
> 1}, then a linear multistep method is A-stable if and only if Vze W, Re

R(z-1)20. It is also well known that an explicit linear multistep method
cannot be A-stable. Thus we have to look only for approximations R of
Log (1+t) whose degree of the numerator is not strictly greater than the
degree of the denominator. In that case we have an implicit method. Not
all the implicit methods are A-stable since the order p of an A-stable
linear multistep method cannot exceed 2. The best A-stable linear
multistep method of order 2 (that is with the smallest asymptotic error
constant) is the trapezoidal rule

h
Yn+1 = Yn +§(fn + fn+1).
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It corresponds to a(t) = t-1 and B(t) = (t+1)/2. Thus R(t) = 2t/(2+t) which
is the [1/1] Padé approximant to Log(l+t) and clearly satisfies the
stability condition since t=1 is the only zero fo a.

Of course y(x) = erx is the solution of the Cauchy problem considered
in the definition of A-stability and we have

k k
L erx = zaiel(uih) - ha Zﬁicl(uih): cp+l(h;~)p+l erx(1+0(h}r))
i=o i=o
that is
k k
Y ajeit -t Y Bieit = OtP+!) .
i=o 1=0

Since y(xp+1) = eh* y(xn) we shall write that
Yn+1 = r(hi) yn.
Thus r(t) is an approximation of e! which satisfies

k
Y (- tB) i) = 0.

i=o
This polynomial has k zeros ri(t),...,rk(t) and, moreover, we have
[et - ri(1)] ... [et - k(t)] = O(tp+1).

But when t = 0 we shall have

k

Y a; ri(0) = 0.

i=o0
Since all the zeros of o must be inside the unit disc and those on the unit

circle must be simple there is one and only one ri such that r(0) = 1 and
thus there is one and only one zero of

a(r(t)) - tp(r()) = 0
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which satisfies
r(t) =e t + O (tP+1),

(see, for example, [86]).
In order for the method to be A-stable this r must be analytic in the left

half complex plane and satisfy Ir(it)l < 1, Vt € R, }:'P_‘. Ir(t)l < 1,

Of course Padé-type, Padé and partial Padé approximants [30] are
candidate for such an r. Some were studied in [16] and [100]. A
determinantal formula, similar to those used in the previous sections, for
partial Padé approximants is given in [157].

The case of the second order differential equation y"(x) = f(x, y(x))
can be treated in a similar way. Since it can be written as

D2y(x) = f(x, y(x))

R must now be a rational approximation of [Log (1+t)]2 and the
differential equation is replaced by the difference equation

A(A)yn = h2 B(A)fy.

We have

11 7
Log2(1+t) = 12 - ¢3 +13 4 - T3 ¥ + O(19).

It is easy to see that Numerov's method given by

h2
Yn+2 - 2¥Yn+1 + ¥Yn = ﬁ(fn+2 + 10 fpe1 + fn)

corresponds to
R(t) = 122/(12 + 12t + 12) = Log2? (1+t) + O(15)

which shows that R is the [2/2] Padé approximant of Log2 (1+t), and that
Numerov's method has order 4.

The study of the stability (called P-stability in this case) and of the

so-called phase lag can be conducted via the model equation y" = -w2y.
Since the solution of this differential equation satisfies

Y(Xn+2) - 2 cos wh y(xp41) + y(xp) =0
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we shall write that

Yn+2 - 2r(W2h2) yp41 +yn =0
which shows that r(w2h2) must be an approximation of cos wh.
The multistep method will be said to be P-stable if Ir(12)l <1 for real 12>0.
For a complete study see [47] and the references given herein.
More generally if we want to solve an operator equation of form

Ay =f

and if A has a formal series expansion with respect to an operator B

A =ayl +a;B +a;B2 + ...

we can replace A by an approximation N(B)/D(B) and solve the
approximate equation

N(B)y = D(B)f.
§.3 - Approximation of series.

Let ¢ be the linear functional on the space of polynomials defined
by c(xi) = ¢; for i = 0,1,... (¢ = 0 if i < 0). Then we formally have

f(t) = c((1-xt)1) =co +c1t + cot2 + ...
If P is the Hermite interpolation polynomial of (1-xt)-1 at the zeros of a
given polynomial vg of degree k, then c(P(x)) is a rational function with

a numerator of degree k-1 and a denominator of degree k, called a
Padé-type approximant of f, denoted by (k-1/k)f(t) and such that

(k-1/k)¢(t) = f(t) + O(tk).
If vp is the formal orthogonal polynomial of degree k with respect to c,
that is vg = Py such that c(xi Py(x)) = 0 for i = 0,....k-1 then (k-1/k)¢(t) is
the usual Padé approximant [k-1/k] of f and we have

[k-1/k])g(t) = f() + O(t2k),

If the zeros of vk are assumed to be distinct then, from the
determinantal formula for P, we have
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0 Co .. Ck-1
k-1
(1-x1)°1 1 .. xq
(1-xgt)-! 1 !
-Xkt)” . XK
(k-1/k)f(t) = - 1
1 xi X1
k-1
I xx .. xx

k-1
Of course if some zeros of vk coincide (1-xit) 1, 1, Xi,....Xj have to be

replaced by their derivatives up to the multiplicity of the zero minus
one.

Let us now generalize by replacing the linear functionals
previously used (that is the evaluation functionals of a function and its
derivatives at the points x;) by any linear functionals, that is using the
interpolation polynomial P such that Lj(P) = Lj((1-xt)-1) for i = 0,....k-1.
We thus obtain a generalization of Padé-type approximants for which
the same notation will be kept although it will not, in general, designate
a rational function. We have

0 Co Ck-1
Lo((1-xt)'1)  Lo(1) .. Lo(xk-1)

Lg.1((1-xt)-1) Lgg(1) .. Li.j(xk-1)
Lo(l) .o Lo(xk-l)

(k-1/k)¢(t) = -
Lg-1(1) .. Lg.p(xk-1)

Li((1-xt)-1) is a function of t that will be denoted by fj(t) and we
formally have

fi(t) = £;(0) + fi(1)t + fi(212 + ... with Li(xJ) = fi(j).
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Thus multiplying the second column in the numerator of (k-1/k) by 1,
the third by t,..., the last one by tk-1 and adding to the first column, we

obtain
(k-1/K)f(t) = co+Cit+... + ck-ptk-]
0 Co Ck-1
Lo(xk(1-xt)-1)  Lo(1) .. Lo(xk1) (0,0)
-tk /Dk

Li-1(xk(1-xt)"1) Lg-1(1) .. Lg-g(xk-1)
that is

(k-1/k)f = f(t) + O(tk)
which shows that these new approximants satisfy the same
approximation property as the Padé-type approximants, the only (but

major) difference being that (k-1/k) is a linear combination of the
functions f,,...,fk-1 that is

(k-1/k)f (1) = apfo(t) + ... + ak-1fk-1(t)
where the aj's satisfy
aoLlo(1) + ... + ak-1 Lx-1(1) = ¢

aoLlo(xk-1) + ... + ag-1 Lg.1(xk-1) = ck1.

Moreover

f(t)-(k-1/k)g(t)=
c(xk(1-xt)-1) Co Ck-1

Lo(xk(1-xt)-1)  Lo(1) .. Lo(xk-1) (0,0)
wee ves ‘o . /Dk )
Li.1(xk(1-xt)"1) Lg.1(1) .. Lg.1(xk-1)
Let Py be the monic biorthogonal polynomial of degree k satisfying
Li(Px(x)) =0 i=0,..,k-1.

We have
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f(t)-(k-1/k)¢(t)=
c(xk+i(I-xt)-T) Co Ck-1

do(Pe(x))+tk+] Lo(xk+1(1-xt)-1)  Lo(1) .. Lo(xk1) /D(o,o)
c(Px k .

Lg-1(xk+1(1-xt)-1) Ly.1(1) .. Ly-1(xk-1)

This shows that, in general, the degree of approximation cannot be
increased unless

aoLo(xk+i) + .. + ap jLi.1(xk+) = cxyj
for 1 = 0,....m-1. If these conditions hold then
f(t) - (k-1/K)p(t) = O(tk+m),

In fact, for increasing the order of approximation one has to choose the
functionals L; in a proper way (that is such that this system is satisfied
with m=k) and this is exactly what is done in the Padé case when
selecting the interpolation points xi,...,xx as the zeros of the orthogonal
polynomial Py.

Let us set
c(l) Lo(1) .. Lk-1(1)

ex = (-1)k /D%

c(xk-1) Lg(xk-1) .. Ly 1(xk-1)
c Lo Lk-1
Thus, if we set L.1 = ¢, the functional ex is, apart from a multiplying
-1,0
factor, the functional Lk ) of the previous sections, and we have

f(t) - (k-1/k)g(t) = tk ex(xk(1-xt)-1)

which is an expression for the error very similar to that for the ordinary
Padé-type appl_'oximants [17, theorem 1.4, p. 20].
Thus if ex(xk+i) = 0 for i = 0,....k-1 we shall have

f(t) - (k-1/k)e(t) = O(12k)

which is a generalization of Padé approximants and, in that case, (k-1/k)
will be denoted [k-1/k]. We have

(-1)k ex =c - (boLo + ... + bx.1Lk-1)
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and the conditions for increasing the order of approximation are
boLo(xk+i) + ... + by jLk-1(xk*+) = ck4i 1 =0,....k-1

which is exactly the previous system and shows that bj = a; for j = 0,...,
k-1. Thus L,,...,.Lx.1 have to be chosen in order to satisfy this system if
we want an approximation of order 2k.

Let us now assume that, instead of being a formal power series, f is
a series of functions

f(t) = cogo(t) + c121(1) + c282(1) + ...
Let G(x,t) be the generating function of the g;'s defined by

G(x,t) = go(t) + x g1(t) + x2 ga(t) + ...
and let us replace, in our definition of Padé-type approximants, the
function (1-xt)-! (which is the generating function of gi(t) = ti) by G(x.,t).

We obtain exactly the same type of results

0 Co .  Ck-1
Lo(G(x,t)) Lo(1) .. Lo(xk-1)

Lg1(G(x,t)) Lk.3(1) .. Lyg.j(xk-1)
Lo(1) .. Lo(xk-1)

(k-1/k)g(t) = -
Li-1(1) ... Lg.1(xk-1)

Setting fi(t) = Lij(G(x,t)) we have

(k-1/K)1(t) = cogo(t) + ... + ck-18k-1(t)

0 Co v Ck-1
Lo(xk Gk(x,t1)) Lo(1) .. Lg(xk-1) (0,0)
/Dy

Lk-1(xk Gi(x,t)) Lk-1(1) ... Lg.1(xk-1)

= f(t) + O(gk(t))
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with Gk(x,t) = gk() + x gk+1(t) + x2 gr+2() + ... and where O(gk(t))
designates a series beginning with the term gg(t).

We thus obtain a generalization of Padé-type approximants for
series of functions as defined in [17] and studied in [137]. (k-1/k) is
again a linear combination of f,,...,fx-1 as above where the a;'s satisfy the
same system of equations. Since this system does not depend on G the
aj's are the same as for (k-1/k)f when f is a power series with the same
coefficients cj. Thus for a series of functions we only have to replace the
fi's by the new ones, a property already used by Van Rossum [163].
Thus there are two stages for obtaining an approximation of

f(t) = c(G(x,1)).
First G(x,t) is replaced by its interpolation polynomial P such that
Li(P) = Li(G(x,t)) fori = 0,...k-1.
(k-1/k)f(t) = c(P(x)) is an approximation of f such that
(k-1/k)(t) = f(t) + O(gk(1)).
Moreover (k-1/k) has the form
(k-1/k)f(t) = aoLo(G(x,t)) + ... + ak-1Lk-1(G(x,1))
where the aj's satisfy

aoLo(xi) + ... + ag.1Lk.1(x1) = c(x}) fori = 0,....k-1,

* . ) . *
that is Lx (x)) = 0 for i = 0,....k-1 with Lg = agLo + ... + ak-1Lk.1 - c.
Now if we want to increase the order of approximation we shall choose
Lo,....Lk-1 such that

aoLo(xi) + ... + ak-1Lk.1(xi) = c(xi) for i = k,...,2k-1.
In that case c(P(x)) will be denoted by [k-1/k] and we have

(k-1/k]g(t) = £(t) + O(g2k(t)).

In the first case if G is a polynomial of degree at most k-1 in x then
(k-1/k) is identically f. In the second case if G is a polynomial of degree
at most 2k-1 in x then [k-1/k] is identically f. This is exactly the well
known property of interpolatory quadrature formulae when, in the first
case, the functionals L; are arbitrary and, in the second case, they are
chosen in an optimal way thus leading to Gaussian quadrature methods.
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In the second case let now Py be the monic orthogonal polynomial of
degree k with respect to c. We set

Pr(x) = bg + bix + ... + bg.1xk-1 + xk,

Since aoLo(xi) + ... + ag.1Lg-1(x¥) = c(xi) for i = 0,...,2k-1 we have,
multiplying equation i by by, equation i+l by bj,..., equation i+k-1 by
bk-1, equation i+k by 1 and adding

c(xiPy(x)) = agLo(xiPg(x)) + ... + ag.1Lk-1(xiPx(x)) =0 i =0,...k-1.

In the usual Padé case this is obviously true since Ljis the
evaluation functional at the point x; which is a zero of Py (or the
evaluation functional of one of its derivative is x; is not simple). In the
generalized case studied here, the difficulty is to find such Lj's.

For arbitrary p and q the Padé-type approximants (p/q) and the Padé
approximants [p/q] can be constructed from (k - 1/k) and [k-1/k]

since, forn 2 0
(n+k/k)f=cg + ... + cut? + t“+1(k-1/k)fn with fp(t) = Cpn+1 + Cpe2t +

(k/n+k)f = t'"‘”(n+k-l/n+k)}n with 'fn(t) =0+ ...+ 012 4 cotn-1 4 cytn + ...

Let us generalize one step further. Instead of taking 1, x,..,xk-l as a
basis of Py.1, let us now take ug(x), ui(x),...,uk-1(x) where ujis a
polynomial of degree i. Using the notations of the introduction, let
Rk.1 € Span (ug,...,ux-1) satisfy the interpolation conditions

Li(Rk-1) = Li((1-xt)-1) i=0,..k-1.

c(Rk-1(x)) = (k-1/k)f(t) will be an approximation of c((1-xt)'1) = f(t) and
we shall have

0 c(uo (x)) .. c(uk.1(x))
Lo((1-xt)-1) Lo(uo(x)) .. Lo(uk-1(x))

Ly 1((1-xt)-1) Li-j(uo(x)) .. L 1(uk-1(x))
Lo(uo(x)) .. Lo(uk-1(x))

(k-1/k)(t) = -

Lx-1(uo(x)) .. Li-1(uk-1(x))
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But, as we saw in section 3

k-1
Rict= 2 Li ((1-x)) ui(x)
i=0
and we also have
k-1
%
(k-1/k)®) = X e(ui(x)) Li ((@-xry?).

1=0

This is exactly the approach followed by Prévost [155] when he
expanded (1-xt)-! into a series of polynomials

Axtyl= 3 £ () uix)

1=0

*
and truncated it after ug.;. In that case L; is the functional which
associates to a function g the coefficient of u; in its expansion. Prévost
treated the cases where u; is the Chebyshev polynomial of first or
second kind.

If f is a series of functions, (1-xt)'! has to be replaced by G(x,t) and
then expanded into a series of polynomials u;.

5.4 - Biorthogonal polynomials.

The words "biorthogonal polynomials” have been used for a long
time and they cover different objects having some connections and
which can be put into the general framework described above.

This concept seems to have been studied for the first time by Didon
in 1869 [62]. He considered two sets of polynomials (Ug .} and {Vi .} of
degree k with respect to xT such that if n # k

jg Ukr Vardx = 0.

Extensions of this notion, obtained by introducing a positive weight
function in the integral and changing the interval of integration, were
studied by Deruyts in 1886 [61].
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This concept of biorthogonal polynomials was further generalized by
several authors (which are not listed here) and, among them, by
Konhauser [117] who considered the case

J‘;’ Pu(x) Qu(x) w(x)dx = 0 m# n

where P;n and Qp are polynomials of degree m and n in r and s
respectively, r and s being polynomials of given degrees.

Formal biorthogonal polynomials were considered by Van Rossum [164]
where reference to previous works can be found. More recently, they
received a combinatorial interpretation [116] generalizing that of
Viennot for the wusual orthogonal polynomials [185]. Biorthogonal
Laurent polynomials are studied in [96].

Another type of biorthogonal polynomials was proposed in [107]. We
shall now study it in more details. We set

Tk(k) = [Fxk datx, w).

A family of polynomials {Pgx} is said to be biorthogonal if Vk, Py has the
exact degree k and satisfies

j : Pr(x) da(x, pi) =0 fori = 0,...k-1.

n
Adjacent families of biorthogonal polynomials “Sk)} can be defined
similarly by

J': xn Prx) da(x i) = 0 for i = 0,...k-1.

Such biorthogonal polynomials have applications in designing
multistep methods for integrating ordinary differential equations [108],
in rational approximation of Stieltjes functions [112], in the study of the
zeros of transformed polynomials [109] and in numerical quadrature
[106]. Their theory has been studied in [110]. The same type of
biorthogonal polynomials, but in the formal case, was also considered in
[26] under the name of multi-orthogonal polynomials which seems to be
more appropriate since we only consider one family of polynomials
satisfying

Li(Px)=0 fori = 0,...,k-1
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where the L;'s are linearly independent functionals. The case of
biorthogonal polynomials corresponds to

Li (xk) = Ie(ui).

In [111], adjacent families of biorthogonal polynomials were proved to
satisfy a recurrence relationship. This relation is a direct application of
the E-algorithm with S, = x? and gij(n) = In(pi) as shown in [33] (it can
also be obtained from the H-algorithm). Thanks to the theory of section
4 and the recurrence relations of sections 4.1 and 4.2 we can generalize
biorthogonal (or multi-orthogonal) polynomials one step further and
give new recurrence relationships.

Let us assume that E is a commutative algebra and let us set xj= xi
with x € E. Then

Li(x; o Li(x;
N e xjen) Li(x) - Li(xjen-1)
x(l"l) -y /
" Li+n-1(7(j) Li+n-1(xj+n) - ' _ '
Li+n-1 (XJ) L:+n-1(xj+n-1)
1 xn
(1,j)

Let us define the polynomial Pnl' by
i,j (1,
x,(‘ ) = xJ P,(1 J)(x).
Then we have the biorthogonality property
. (1,]) ..
Lp(xJPy " (x)) =0 for p = i,...,i+n-1

which reduces to the biorthogonality of Iserles and Ndrsett when i = O.

Fs immediately gives

. Ny NP RISV SN
. 1
Py V) = x pip ) el Pal ) p D

Li+n~1("-i Pn-1 (x))

which is exactly the recurrence relation obtained in [111].
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The other formulae of section 4.1 provide new recurrence relations

(1,j),

for the P, ~'s. Thus we obtain from F4, Fg and F; respectively

L. (i+1,j+1)
1
Pl o = x pty 1 Dy AT Prl L9} p [
Li(xi Py-1 " (x))
(i+1,)) oy
PPy - plH* 1)y Li o )( ) G+
Li(xJ Pp.1 " (x))
J)
r(ll'*ls.l)(x) _ Pr(llvl)( ) - Lisp(x] (l;n j;‘)) Pn(lTl’J)(x)

L|+n(x-’ Pn-1 " (x))

When the upper indexes i and j are fixed, the bordering method can be

used to compute recursively the sequence PE,I'J), P(ll’J), P(zl'J),... as
described in [32]. The multistep formulae given in section 4.2 can also be
applied to adjacent families of biorthogonal polynomials.

Let us now assume that the linear functionals satisfy

Li(x™m) = L md(x?) i=0,..d-1.

If n = r+md with 0 £ r < d, the previous biorthogonality relations

Lyxi PeP0) =0 for p = 0,..un-1
become
p(xkﬂ P(n ’J)(x)) =0 for k = 0,...,m-1 and p=0,...,d-1
(0.j)
Lp(xm+J Ph (x))=0 for p = 0,....,r-1
: : (0,j) .
Thus the biorthogonal polynomials Py are identical to the vector

orthogonal polynomials of Van Iseghem [103]. Such polynomials satisfy
a recurrence relation with d+2 terms (when d = 1, the usual three-terms
recurrence relationship for orthogonal polynomials is recovered).
Moreover [105]
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. (0,5)
Lo(xk+i P, "'(x))=0 forn 2 kd+1 and k 2 0

which shows that these polynomials are 1/d-orthogonal with respect to
the functional Ly, a notion introduced by Maroni [131] (a formalism for
their study is given in [132]).

Relations between adjacent families of vector orthogonal
polynomials are given in [103], one of them reducing to the relation due
to Iserles and Ndrsett since vector orthogonal polynomials are a
particular case of the biorthogonal ones. Vector orthogonal polynomials
can also be computed by a generalization of the qd-algorithm. They
satisfy an extension of Favard's theorem and their zeros have been
studied [105]. Such polynomials have applications in vector Padé
approximants which are rational approximants with a common
denominator which approximate simultaneously d formal power series
[101, 102, 105].

As pointed out in [112], the denominators of the simultaneous
approximants of de Bruin [41] are also related to biorthogonal

polynomials. See [33] for more details and {42] for a generalization.

Vector orthogonal polynomials can be generalized by taking the
first upper index i different from zero.

Orthogonal Laurent polynomials were introduced by Jones and
Thron [115] in connection with two point Padé approximants and T

continued fractions. A Laurent polynomial is an expression of the form

m

P(x) = Jajxi with - <k $m < +ee,
j=k

We shall denote their set by R and we set
R 2m = Span(x-m, x-m+1__ x-1 1, x,...,.xm)
R 2m-1 = Span(x-m,..., xm-1),
Let c be the linear functional on R defined by its moments
ci = c(xi) i=0,%1,+2..

We consider the monic Laurent polynomials Ra, and Rop41 (n = 0,1,..))
defined by
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C-2n .- ©€o
-2n
Raa(x) = /st
C.1 ..C2n-1
x-n . xnh
C.2n-1 . ©Co
-2n-1
R2n+1(x) = /H2£1+1 ) .
(o | . C2n
x-p-1 . xn
They satisfy
c(xiR2a(x)) = 0 i =-n,..,n-1
c(xiR2p+1(x)) = 0 i=-n,..,n

The family {Rp} is called a family of orthogonal Laurent polynomials
with respect to the functional c¢. They are known to satisfy the
recurrence relations

Ran(x) = (A2px + B2p)R2p-1(x) - C2nR2p.2(x)

R2n+1(x) = (A2p+1x"1 + B2p+1)R2n(x) - C2n+1R2n-1(X)

with Ro(x) = 1 and Ri(x) = 1-¢ox-1,

Multiplying orthogonal Laurent polynomials by the suitable power of x
leads to ordinary polynomials; thus let us set

V2a(x) = x"R2p(x)
Van+1(x) = xM+1R2p41(x).
We have
c(xiVa(x)) = 0 i =-2n,..,1
c(xiV2p4+1(x)) =0 i=-2n-1,...,-1
which can be written as

0.,...,2n-1

—
i

c(-2m) (xiVan(x)) = 0

cC20-D)(xiVon 1(x)) = 0 i=0,..2n.
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Thus V25 and V2541 are members of two adjacent families of orthogonal

. . e (-2n) (-2n-1)
polynomials since V25 is identical to Pz and V2p+1 10 Pan+1 and

therefore their theory fits into our framework as remarked by Draux
[64].

Padé approximants for Laurent series were introduced by Gragg
[83], they are called Laurent-Padé approximants. Of course a Laurent
series can be splitted into negative and positive powers of the variable
and thus there is a strong connection with two-point Padé approximants
and orthogonal Laurent polynomials, a connection fully exploited and
developed in [43] (see also ([81]). Such approximants (and Laurent
orthogonal polynomials) have applications ranging from stochastic
processes, time series analysis, signal processing, linear systems theory
and inverse scattering (43]. There are also connections with polynomials
orthogonal on the unit circle.

Let f1,....fN be formal power series

11 i
fi(t) = fo+ fit+ 202 + ...

The Padé-Hermite approximation problem consists in finding the
polynomials Py,...,PN of respective degrees ny,...,nN such that

f1(OP1(t) + ... + fN(t) PN(t) = O(ts+N-1)

with s = n1 + ... + nN. This problem contains the usual Padé approximation
problem (N=1), quadratic approximation (N=3, fi=f, f=f2, f3=1) which
was introduced by Shafer [169] (see also [44]) and D-log approximation
of Baker [5] (N=3, f1=f, f=f", f3=1).

Extending the usual Padé case, it was showed in [5] how to relate
Padé-Hermite approximants with an extension of orthogonal
polynomials called vector orthogonal polynomials (with no relations to
the previous ones). These vector orthogonal polynomials have the
representation

Vi(x) =

1 1 i i N N
fo . fa, . fo .. fn S "

fl .. 1l ... fi . fi ... fN .. IN
s+N-2 s+N-2+nl s+N-2 s+N-2+ni s+N-2 s+N-2+nN

(o] (o) 1 X 0o .. 0
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Let cibe the linear functional defined by

, i
ci(xk) = fi k=01,..;i=1,..N.
Then the polynomials V; satisfy the orthogonality relation

N

Yeixkvix)) = 0 k=0, s+N+2.
1=1

Some recursive methods for the computation of these polynomials were
given in [65] (see also [60, 153 ]). Of course V; depends on nj,...,nN.

Let us now assume that ni = ... = nNy = n and let Py(x) be the vector with
components Vj(x),...,VN(x). Since the V; are defined apart from an
arbitrary non-zero multiplying factor, we have

1 N 1 N
f, A fn £
P =1 4 .. {N o fl .. fN
N(n+1)-2 N(n+1)-1 N(n+1)-2+n N(n+1)-2+n
| xn]

where I is the N x N identity matrix.
Let ¢ be the vector of functionals cl,....cN. If Q is a vector of polynomials
with components Qi,...,QN we shall make use of the notation

N
Q) = .):fi(oxx)).
1=
Thus we have c(xkPa(x)) = 0 k = 0,....N(n+1)-2,
or Lx(Pp(x)) =0 k = 0,...N(n+1)-2

if Lx is defined by
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N
L(Q()) = c(xkQ(x)) = 2ci(xkQi(x)).
i=1
Going from Py, to Ppi1 needs the introduction of N new rows and
columns in the above determinantal expression, an introduction which
can be done step by step. For that, let us define the intermediate

i
polynomials P, by adding the first i new rows and columns contained

) (o), .. . (N)
in Ph+1. Thus Py ° is identitcal to Py, and P, ~ to Pn+i. Moreover

c(xk Pl(li)(x)) =0 k =0,...N(n+1)-2+i.

An interesting open question would be to see if the recurrence relations
of sections 4.1 and 4.2 could be used to compute these polynomials.

Several other possible extensions of the notion of orthogonality for
polynomials can also be studied in our framework. For example if {w;} is
a given family of linearly independent polynomials, one can look for the
family {Px} such that

c(wi(x) Px(x)) =0 fori = 0,....,k-1.
The usual orthogonal polynomials are recovered if wi(x) = xi. The case

wo(x) = 1, wj(x) = (x-xj) wj.1(x) leads to what can be called multipoint
orthogonal polynomials.

Another interesting case is that of Stieltjes' polynomials. Let {Pyx)} be
the family of formal orthogonal polynomials with respect to c¢. The
polynomial Vi1, of degree k+1, satisfying

c(xiPk(x) Vk+1(x)) = 0 fori=0,..k

is called the Stieltjes’ polynomial of degree k+1. If we define the
functional Lg by

Li(p(x)) = c(Px(x) p(x))
then
Li(xiVi41(x)) = 0 i=0,.k
which shows that Vi, is the polynomial of degree k+1 belonging to the

family of formal orthogonal polynomials with respect to Lg (which
depends on k). Stieltjes' polynomials have important applications in
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Gaussian quadrature methods [78, 137] and Padé approximation [27].
They have also been studied in [156] from the formal viewpoint.

Let us now define what can be called orthogonal polynomials in the
least squares sense : a monic polynomial Py of degree k such that

m
d2 = ¥ [c(xi Px(x))]2
i=o0

is minimum, where m 2 k-1. Writing Px(x) = ap + ... + ak.1xk-1 + xk the
aj's are solution of the linear system

m m m
ao 2 CiCij+j + ... + ak-1 2ci+k-1ci+j + ZCi+kCi+j =0 j =0,....k-1.
i=0 i=o i=0

Setting yn = (Ccp,...,Cn+m) 7T, the system writes
ao(Yo, ) + o + ak-1(%k-1, 7 + %, %) =0 j =0,..k-1.

Defining the linear functionals L; by
Li(xJ) = (¥;, 7))
we have
Li(Px(x)) =0 i=0,.kI

which shows that these least squares orthogonal polynomials also fit into
the general framework of biorthogonality. Such polynomials could be
useful in the definition of Padé approximants in the least squares sense
that is rational fractions with a numerator of degree p and a
denominator of degree q such that their series expansion d, + d;t + dat2
+ ... be such that

m

Y (di-ci)2

i=0

be minimum (m 2 p+q).
All these notions deserve further study.
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5.5 - Statistics and least squares.

There are obviously many connections between statistics and
biorthogonality. For example orthogonal expansions and the theory of
reproducing kernel Hilbert spaces play a central role in time series
analysis that is "the extraction, detection and prediction of signals in the
presence of noise” as stated by Parzen [152]. Many papers on this
problem were gathered in [187]. Other examples are given by the
multivariate normal distribution, the computation of partial correlation
coefficients, some special covariance and correlation structures arising in
statistical applications, the chi-squared and Wishart distributions, and
the Cramér-Rao inequality where Schur complements (that is ratios of
determinants similar to ours) have many applications described by
Ouellette [150]. Recently biorthogonalization was used for the least-
square linear prediction of any statistically dependent random variable
and it provides an extension of Slepian's model for Gaussian noise
conditioned on any number of derivatives [10]. It is also known that
least squares approximation and some estimation problems in statistics
have common aspects [58, p. 126] (see also some of the papers contained
in [187] and, in particular that of Parzen [151]). On the other hand the
problem of optimal linear approximation in a reproducing kernel Hilbert
space can be treated by introducing a Gaussian measure and then using
well known techniques of probability theory and statistics to obtain
properties of the function from the given data [120] (see also [119]).

Although it would be very much useful, our aim in this section is
not to rephrase all these results in a common language but it is to give
an application of biorthogonality to the computation of the coefficient of
correlation and to use this coefficient to chose between several
extrapolation procedures for a given sequence.

Let x, y, x1,...,xk be random variables. We shall first recall some well
known results (see, for example, [63] or [73]). We shall denote by E(y) or

by y the expectation (mean value) of y and we shall set

cov (xy) = E((x-x)(y-y)) = E(xy) - xy
var x = cov(xx) = E((x-x)2) = E(x2) - x2,

We shall define the multiple correlation coefficient of y and xi,...,xx by

-1
Pk = [(ak, Cx ag)/var y]1/2

with ak = (cov(yxy),...,cov(yxx)T
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var x1 cov(x1x2) .. cov(xxk)
cov(Xx2X1) var x2 .. cov(x2xg)

cov(xkxi) cov(xkx2) .. var xg

When k=1, p; is called the linear correlation coefficient.

Thus from Schur's formula

0 cov(yxy) .. cov(yxk)

-1 cov(x1y) cov(xixi) .. cov(xixg)
(ak, Ck ak) = - /1Cy!

cov(xky) cov(xkxy) .. COv(xkxk)
which shows that py can be recursively computed by the algorithms
developed in sections 4.1 and 4.2.

As its name indicates px measures the correlation between y and
X1,...,Xk since we have the following property

Property 1.
Let a, by,...,.bx be constants. If y = a+bix1+...+bixk then px = 1.
Proof :

Let b = (by,...,bx)T. Then

k
cov(x iXi)
‘E,b ) cov(x1(y-a))
Ch=] . S| e
k cov(xk(y-a))
cov(xk 2 bix;) <

i=1 )

But cov(xj(y-a)) = cov(xy) since a is a constant. Thus
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Ckb = ag

and
k k

-1
(ak, Cx ax) = 2 bi cov(xjy) = cov(y 2bixi)= cov(y(y-a))
i=1 i=1

= cov(yy) = var y
which shows that px = 1. ¢

Since a is a constant, var(y+a) = var y and the bj's which minimize
var(y - a - byx] - ... - byxx) are the same that those minimizing var(y -
bixti - ... - bx xx). From the proof of property 1, they are given by b =

Cx ax. Moreover

k k

var (y - 2, bj xj) = inf, var (v - Y d; xj).
i=1 € i=1

Since the bj's have been obtained as the solution of the preceding linear
system, we have

a = E(y-bixy - ... -bgxk) =y - by x3 - ... - bgxk
or, equivalently (after some manipulations which are omitted)

a+bixy+.. +bxg = 5'
ax] + by E(xjx1) + ... + bxE(x1xk) = E(x1y)

ax, + by E(xkx1) + ... + bxE(xkxx) = E(xky) .
Comparing with the system solved in [20], shows the connection with
least squares extrapolation by the E-algorithm.
We have the
Property 2.

The multiple correlation coefficient of y and byxy + ... + bxxg is

maximum for b = Cy ax. For this choice it is equal to py.
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The difference between properties 1 and 2 must be clearly understood.
In property 1, bp,...,bx are arbitrary constants and the multiple
correlation coefficient is involved. In property 2, bj,...,bx are fixed
constants and the linear correlation coefficient is used. Its value is

-1
maximal and equal to pg for b = Cy agx. In that case the quality of the
approximation can be measured by

var ex = var (y-byxi - ... - bxxg)
and it is easy to prove that
Property 3.

k

-1
var ex = var y - (ak, Cx ax) = inf = var (y- Zdixi).
dERk i=1

Thus
Property 4.
dk=1-p1%=var ex/var y 2 0.
It follows that 0 < pk < 1.
Let us now set
d(x,y) = [var(x-y)]1/2 ,
We have

Property S.

1°) d(x,y) 20and d(x,y) = 0 ify = a+x where a is a constant.
29 d(xy) = d(y,x).

3% d(x,y) < d(x,z) + d(z,y).

4°) d(x+z, y+z) = d(x,y).

5° d(ax,ay) = lal d(x,y) where a is a constant.

6° d(x,y+a) =d(x,y) where a is a constant.

This property shows that d is a pseudo-distance. We can obtain a
distance by means of the quotient modulo the equivalence relation

x . xedxx)=0
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that is by considering x and x' as identical if and only if d(x,x") = O.
We set

k
Ni={x!x= 2dixi)

i=1

and we have

k
d(y, N 1) = jnf | 40y, gfixi)

k

, Lvarly - X dixi)]112

= inf
deR i=1

= (var )12 = [(1-pi) var y 1172

k -1
=d(y, Y bix;) withb= Cy ag.
i=1

k
Thus x = z djxjis the projection of y on N x and property 3 is
Pythagoras' :::orem.
Moreover
cov(yy) cov(yxi) .. cov(yxk)
a2y, N ) = cov(x1y) cov(xixy) .. cov(x1xk) /lel

cov(xky) cov(xkXxy) .. COV(XkXk)

which i1s a known result if we consider the bilinear form defined by

(xly) = cov(xy).
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This form is the bilinear form associated with our distance. Indeed we
have

lIxll = d(x,0) = (var x)1/2 = (xIx)1/2,

Thus
(x | x) = var x.

A bilinear form is entirely determined by its values on the diagonal. We
have

2(xly) = (x+ylx+y) - (xIx) - (yly)

= var (x+y) - var x - var y

= 2 cov (xy)
and thus (xly) = cov(xy).
Everything remains valid if E is any linear form such that E(a) = a if a is
stationary. We shall assume that E(x2) = O if and only if x = 0. Then we
have
Property 6. If d(x,y) = O then y = a+x where a is a constant.
Property 7. If d(y, Nx) =0 then y e Ny.

Property 8. Ify=a+dix) + ... + dgxk+e then d(y, N k) = d(e, N k).

Proof :

d2(y, N ) = var y - (a, Ci'ap). Let d = (dy,....di)T.

i=1

with a) = (cov(ex1),...,cov(exx))T. Thus d = Cﬂlak - Cf(l ay, that is

Then
k
cov(xi Zdixi)
i=1 cov(xi(y-a-g))
Ckd=]| v =3 [, = ag- a'k
k cov(xk(y-a-g))
\cov(xk Zdixi)
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-1 -1
Ckag=d + Cg ap

i -1
(ak, Ci' o) = (axd) + (ax, Ck ' a})
= () + (@) + Cid, Gk 8} )

T :
But Ci = Cc and then (Cyd, Ci' al) = (d, ay).
Thus

(ak, Ck'aK) = (ak, &) + (&}, Ck' a) = (d, a}).

We have
var y = var (dixq + ... + dkxg + €)
= var (djx1 + ... + dxxg) + var € + 2cov((di1x1 + ... + dgxk)e).
But
cov((dixy + ... + dgxk)e) = dicov(x1€) + ... + dxcov(XkE)

= (d, a})
and

var(dixq + ... + dgxk) = E((d1x1 + ... + dgxk)?) - (d1X1 + ... + dgxg)2

k
= Ydidj (E(xix)) - X X})
ij=1
k
= 24didj cov(xi xj) = (d, Ck d)
ij=1

(d, ak) - (d’ q()~

Thus finally
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a2y, N 1) = (d, &) - @ &) + var e + 2, &) - (ak, d) - (3. Ci* &)

=vare- (&, Ci &)=d%e Ny). o

- (dv %)

We previously saw that the bilinear form associated with our distance

was (xly) = cov(xy) = E(xy) - xy.

Let us now take the bilinear form given by

(x,y) = E(xy)

and let us set

k

My ={xlx= 2 ajxj with xo= 1}.

We have

(v,y) (¥.xo)
d2(y,M D) = (x0,y) (Xo0.Xo0)
(Xk,Y) (xk,XO)

But Vz, (z,x0) = E(z) and thus

E(y2) E(y) E(yx1)

Ey) 1 E(xp)
d2(y,M k)=

E(xkxy) E(xx) E(xkxy) ...

i=0

.. (y,xk)
e (XO,Xk)

v (XkyXk)

... E(yxy)
. E(xx)

E(xE)

(XvaO) see (xo»xk)
(Xk,Xp) .. (XKk,Xk)
1 E(x1) E(xyx)

E(x]) E(xf) w. E(x1xk)

E(xx) E(xkx1) ... E(x%)

In the numerator let us multiply the second row by E(y) and subtract
from the first one. Then we multiply the second row of the numerator
by E(x1) and subtract from the third one, and we do the same for the
first and second row in the denominator and so on. We finally obtain the

Property 9.

d2(y, M «) = d2(y, N x).
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Thus, from the beginning, it is not necessary to center the variables.
Centering the variables just reduces the dimension of the space on which
we project since N g has dimension k and M i has dimension k+1.

Let x be the projection of y on N . We have

EW) Bx1) e B cov(x2) .. cov(xixk)
cov(xyy) cov(xf) . COV(X1Xk) 1
E(y-x) = /
cov(xky) cov(xkxy) .. cov(xi) COVIXX1) - cov(xk)

which is also equal to the coefficient of xo, in the expression giving the
projection of y on M . Since this coefficient depends on the dimension k,
let us denote it by bx. We have

k

bk = E(y-x)=y - Z (ylxi)i;
1=1

where x}, x5,.. is obtained by orthogonalizing xi, x2,... with respect to

(.1.). We have

b0= 0

Y1 = X] x'; = yi/liyll
k-1

Yk = Xk - Z (xk ! x;)x'i' x;‘( = yk/llykll
i=1

o
o
]

bi-1 - (y I xp)x} , with llykliZ = (yx | yk) .

Moreover
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k
d2(y, M k) = liyl2 - 3 Ky, x}12
i=1

Yk = Xk - PIOjN | 1 Xk

and
E(yx) =
E(xx) E(x1) w E(xk-1) )
cov(xyxk) cov(xf) .. COV(X1Xk-1) cov(xl) e COV(X1Xk-1)
/
2
cov(Xk-1Xk) COV{Xk-.1X1) ... cov(xi ]) cov(xk-1%1) .. cov(xk-l)

. : : (n) | .
The relation between this expression and that of ggx.;x in the auxiliary
rule of the E-algorithm can be easily seen.
We also have

- ilm <

bk = bl - Ty iy Y
k-1 (xyly;

TR TR

and, since yk is orthogonal to yi,...,yYk-1, then (yklyk) = (yk!xk) and it
follows that

(yklyx) = d2(xk, M k-1).

Let us now give an application of all these results to sequence
extrapolation by the E-algorithm. We already know that this algorithm

o : (n)
consists in computing the numbers Ex = such that

n
Sn+i = E£ ) + aigi(n+i) + ... + ag ge(n+i)  i=0,..k,

where the gi's are given auxiliary sequences (which can depend on (Sp)).
Let

Nk ={(Sn)IVn, Sp =S + ajgi(n) + ... + axgk(n)).



124 Chapter §

n
It can be proved that Vn, EE ) = S if and only if (Sp) € N k. If we

consider the Sp's and the gj(n)'s as realizations of random variables, then
the multiple correlation coefficient of (Sp) and the (gi(n)) can be
estimated by computing py with

1 m
E((Sn)) = m+1 .2 Sn+i
l—o

and similarly for the sequence (gi(n)). Of course we must take m > k
since, otherwise, px would be equal to zero. It must be noticed that py
depends on n and m. If (Sp) € Nk, then ¥Vn and Vm > k, px = 1 that is
d((Sn), Nk) =0.

When wanting to accelerate the convergence of a given sequence
(Sn) by the E-algorithm, the main practical point is the choice of the
auxiliary sequences (gi(n)). In [59], Delahaye introduced a procedure
consisting in using simultaneously several extrapolation algorithms (that
is several choices for the (gi(n))) and then, at each step n, choosing one
result among those given by the various algorithms according to some
selection test. Such a new selection test can now be based upon the
multiple correlation coefficient :

1 - k and m > k are fixed integers.

2 - We make several choices for the k auxiliary sequences :

1 1 2 2 P P
(81s:-+58Kk )s (81s-s8k )seevs(814e-0s8k )

3 - For a given n we compute the multiple correlation coefficients

1 p ) . .
Pk,.--pk corresponding to the various sets of auxiliary sequences.

i .

4 - We select the index i such that py = Tgxs pi'g and we use the E-
JSP

i i i

algorithm with the auxiliary sequences gj,....gk. Of course d((Sn),Nb

Tg‘Sp d{(Sn), Ni'() where

N i'( = {(Sp)IVn, Sp =S + a; gi}((n) + ...+ ax gjl(n)]

5 - Add 1 to n and go to point 3.
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In its spirit this selection procedure is very close to another one
which will now be described and which is based on a similar technique
used in statistics for time series analysis. (I am indebted to Prof. D. Bosq
for indicating me this procedure).

In convergence acceleration methods one uses a sample of terms of
the sequence to be accelerated,Sn, Sn+1,...,5n+k, to obtain an approximate
value of its limit. Instead of predicting the limit, one can also use the
same technique to predict the unknown members of the sequence

Sn+k+1» Sn+k+2,... [25]). Let us denote by ;1+k+i the predicted values for

i21. If the true values of Sp+k+1,..-.Sn+m are known (as was the case in

the selection test based upon the multiple correlation coefficient) one

can compare them to the predicted values S ., ,...S, ,, by computing

m-k
.Ea(sn+k+i"sﬁ+k+ﬂz
i=

i i
and choose among the sets of auxiliary sequences (gi,....gk) the set for
which this quantity is minimum.

These two new automatic selection procedures have to be studied
from the theoretical and practical points of view. Their possible
connection also deserve further research.

There are certainly many other possible connections between
statistical methods and extrapolation methods. For example, the e-
algorithm can be used in ARMA models as described in [9]. This
algorithm can be considered as a linear filter : we set

k
€n =S - X aiSp.i n2k
i=o
N+k 2
I= Y en
n=k

and we look for the aj's minimizing I with a5 + ... + ax = 1. If N = k then
we must have g, = 0 for n = k,...,2k that is

oSk +..+ axSk =S
ap +..+a=1.
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Then the average S is identical to the value ez(ko) obtained by the ¢-
algorithm since the preceding system is identical with the algebraic
interpretation of the e-algorithm given in [13, p. 51]. If N > k we obtain
extrapolation in the least squares sense by the e€-algorithm as described
in [20] and [49]. More generally one can consider

k
En =S-S5y + .2 ajgi(n)

1=
N
I= EEn NZk

and then find a;,...,ax minimizing I

Some statistical techniques were already applied to the problem of
convergence acceleration in [188] but the subject has to be developed.
On the other hand convergence acceleration methods could have some
interesting applications in statistical procedures such as Monte-Carlo
methods, a subject never studied as far as I know.
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A direct proof of the Christoffel-Darboux identity and a
consequence.

For the usual orthogonal polynomials, the Christoffel-Darboux identity is
always proved by using the three-terms recurrence relationship. We
shall now give a sketch of a direct proof of this identity. For the details
the reader is referred to [35].

We have
Co e Ck
C1 e Cke1l
Pk(x) =tk / Gk
Ck-1 ... C2k-1
1 xk
Co e Ck-1
€1 .. Ck .
where Gg= and where tx is a non zero constant. Thus
Ck-1 .. C2k-2

Px(x) = tyxk + lower terms.

2 2
We set hgy = c(Px (x)) = tx Gkk+1/Gg.
Let us define Ki(x,t) by

o ¢ .. ¢k 1 0 1 .. xk
C1 €2 .. Ck+1 t 1 ¢ ... ck
Ki(x,t) Gk+1 = - = - t €1 .. Ck+l
Ck Ck+1 .. C2x tK
1 x .. xk 0 tk cx .. €2k

Applying Sylvester's identity (see appendix 3) we obtain

0 1 .. xk 0 1 . xk-1
1 ¢ ... ck 1 Co .. Ck-1
(X1} (R Y} ana sse Gk = LE XY (XYY ses ese Gk+l
tk ck ... 2k tk-1 ko1 v C2k-2

127
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1 xk i
) Co ck Co .« Ck-1
(1T} a0 k
Ck-1 C2k-1 Gk e €2kl
That is
Pr(x Pyt
- Gi Gk Kitut) = -G Gieon Kiea(x,0)-(- )k Gk (1 6, AL
or
02 -1
Ki(x,t) = Kg.1(x,t) + Tk_Pk(X) Pr(t) = Kk-1(x,t) + hx  Px(x) Px(t)
tk GxGk+1

and thus we obtain the known formula

k

Kx(x,t) = 3, hi Pi(x)Pi(t).
=0

Let us now apply Schweins' formula (see appendix 3) to

1 ... xk+l
1 .. tk+l
Co . Ck+1
Ck-1 .. C2
We have
1 .. xktl k+1 k
| kel 1 ... xk+ 1 .. t
Co . Ck+1 C Ck
Co . Ck+l Gksr1=| ° ;
eoe e .o Ck ... C2k+1 Ck-1 ... C2k-1
Ck-1 .. C2k ' i
1 .. xk 1 .. tk+l
Co .. Ck Co .. Ck+l

Ck-1 - €2k-1 IV ck .. C2k+1

G G G G
= (-l)k”;fffpm(x)(-l)k ;fm) - (1)K t—kk'Pk(X) (-1)k+1 Tff'll'l’kn(t)
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=Skl rp, ) (x) Py(t) - Pe(x) Prs1()]

tetk+1

Thus we finally have

. xk+1
tk+1

1
1 ..
Co w Ckel | = - == [Py 1 (X)PL(D)-PL(X)Prs1 (V)]

tktk+1
k-1 .- C2k

129

=tk Gi+1 [Pk+1(x)Pk(t)-Pk(X)Pk+ 1 (t)]-

tk+1hk

We shall now prove that

k+1
k 1 D 4
(1) 1 ..o x 1 tk+l
Co .- Ck
(x-t) ) f’ = Co .. Ck+l
tk c - c e . Y
k 2k Ck-1 .. €2k

(*).

In [35], three different proofs of this identity are given. The first one
involves the reproducing property of Kg(x,t) that is Vp € Py,

c(p(x) Ki(x,t)) = p(t) and the fact that the functionals Lj(.) = c(xi.) are
linearly independent since Gg4+1 # 0. The second proof is due to Prévost
[158] ; it is by recurrence and uses Sylvester's identity. The last proof,
which is the simplest one, was obtained by Hendriksen [95]. It is as
follows. Taking the determinant in the right hand side of (*) we replace
each column (from the second one) by its difference with the preceding
one multiplied by x and then we put t-x in factor. We obtain

1 x .. xk+l 1 0 0
1 t .. tk+l 1 t-x tk+1_xtk
Co €1 .. Ck+l = Co C1-XCo ... Ck+1-XCk
Ck-1 Ck .. €2k Ck-1 Ck-XCk-1 .. C2k-XC2k-1
1
C1-XCqo

= (t-x)

Ck-XCk-1

tk
Ck+1-XCk

. C2k-XC2k-1
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Then we add a new second row (1, c¢g,...,ck), a new first column (O, 1,
0,..,0) and we change the sign. Finally we multiply each row (from the
second one) by x and we add to the following one. Thus we get

0 1 tk 0 1 .. 1k

1 Co Ck 1 ¢ .. ¢k
(x-t) | 0 c1-xco .. Ck+1-XCk =(xt) | x o Ck+1

0 ck-xCk-1 .. C2k-XC2k-1 xk ¢ .. c2x

and (*) is proved.
Thus we have

t

" tke+1hy Gr+1 [Pk”(x) Px(t) - Px(x) pk+l(t)] = -(x-t) Gk+1Kk(x,t)

and we finally obtain the usual Christoffel-Darboux identity

k

K -1

tktlhk [Pk+1(x) Pi(t) - Pk(x) Px+1(t)] = (x-t) Zh; Pi(x) Pi(v).
+ i=o

Now we can ask the question whether a family of polynomials
satisfying the Christoffel-Darboux identity also satisfies a three-terms
recurrence relationship. Thus let {Pyx} be a family of polynomials (which
are not assumed to be orthogonal) such that vk 20

- Py has the exact degree k

k
- N [Pk+1(x) Px(t) - Px+1(t) Pp(x)] = (x-t) .Zﬂipi(X)Pi(t) (#+)
i=o
where the a;'s are constants independent of k and yg is a non
zero constant.

We have
k-1
Yx[Pk+l(X) Pg(t) - Px+1(t) Pk(X)] = (x-t) agPy(x)Pg(t)+(x-t) .zﬁipi(x)Pi(t)
i=o

= (x-1) akPi(x) Pr(t) + (x-t) vc-1[Pk(x)Pk-1(1) - P(t) Px_1(x)].
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Thus, Vx,t

Pi(t)[ kPi+1(x)-akxPi(x)+1k-1Pk-1(x)]
=Pe(x)[ kPk+1(t)-aktPk () +¥k-1Pk-1() ]

That is
[kPk+1(x) - akxPk(x) + 1k-1Px-1(x)] / Px(x) = bk

where by is a constant independent of x.
This is equivalent to

Tx Px+1(x) = (akx + by) Pi(x) - ¥-1Pk-1(x) (ss+)
which shows that if the Christoffel-Darboux identity holds then the
polynomials {Pyx} satisfy a 3-terms recurrence relationship that is, by an
extension due to Shohat [172] of a theorem by Favard [68], they form a
family of formal orthogonal polynomials with respect to a linear

functional ¢ whose moments can be calculated, see [17, p. 155] and [162].

Let us now find the expressions of the constants yk, ax and by. It
is easy to see that if we write Py as Py(x) = tyxk + lower terms, then
Tktk+1 = aktk. We set Axi1=ak/yk. Multiplying (s*+) by xk-1 and applying
c gives

ke (xk-TPy41(x)) - akc(xk Pi(x)) - bk ¢ (xk Py(x)) + k-1 c(xk-1Pg_1(x)) = 0

or
ak c(xkPyg(x)) = 1k-1 c(xk-1Px.1(x)).

But hx = tyc(xkPx(x)) and we have

axhg _ hg.]
tk -1 tk-1

since Vk, tx # 0.
Thus, setting Ck+1 = Yk-1/7k, we have

C _aghgte 1 tke1  hgtgg LTS h
k+1 = teheare .t tchgy 2 hy.1°

tk
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Multiplying (se+) by Py and applying c, we get

2 2
Tk © (Pp(x) Px+1(x)) - age(x Py (x)) - brc(Pk(x)) + 1.1 ¢(Px(x) Px.1(x)) = 0

that is
2
b = - ¢(x Px (x))/hg.

2
Setting Bis+1 = bx/yk and ax = c(x Pr(x)) we have

akak_ Ok tk+] _
hkvk ~ hg tk

Bisr = -

Thus we have finally proved that

Pr+1(x) = (Ag41x + Biy1) Pr(x) - Cryq Pr-1 (%)

with
okt tk-1t h
Ak+1 = t%k+1/tk, Bk41 = H%“ and Cy41 = ‘U'z'&l;‘kkl-
tk
which is the usual recurrence relationship.
Moreover
3k k4 %1 Ag+1hg
Ags1 = otk and Cyg4g = = Ache
and thus
ak hg -1 axhy
C = —L =
ke 1= 3 her akn - ak.ihg.g O
-1
It follows that 3y # O such that Vk, aghy =y or ax = yhy .
Thus

tk tk
= a =
L k tk+1 YEktkH

and (++) becomes
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tx k -1
Prteet [Pk+1(x) Pr(t) - Pr+1(t) Px(x) ] = (x-t) 2 hi Pi(x) Pi(t)
i=o

which shows the equivalence between the Christoffel-Darboux identity
and the three-terms recurrence relationship.

Let us set

k+1

(Pk+1(x)Pk(t) - Prs1(t) Px ())/(x-t) = 2, ajjxi-1 -1
ij=1

This polynomial in two variables is related to the determinants of
relation (*). The matrix A = (ajj) is the so-called Bezoutian matrix of the
polynomials Pg and Pg4j. Let us recall that its inverse (which exists if
and only if Px and Px;1 have no common zero) is a Hankel matrix [4] and
conversely. Bezoutian matrices, whose properties can be found in [69],
have many applications in linear control systems, electrical networks,
signal processing, and coding theory [7].
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Duality in Padé-type approximation.

Let Vi be an arbitrary polynomial of degree k and let Rx be the
Hermite interpolation polynomial of (1-xt)-1 at the zeros of Vi. Then
c(Rk) is the so-called Padé-type approximant of f with generating
polynomial Vk. It is a rational function with a numerator of degree k-1
and a denominator of degree k, denoted by (k-1/k)f(t) and such that

f(t) - (k-1/k)p(t) = O(tk) (t—0).
If Vx is identical to the formal orthogonal polynomial Px with
respect to c¢, that is the polynomial satisfying the orthogonality
conditions

c(xi Px(x)) = 0 i=0,.k-1

then the Padé-type approximant (k-1/k)f(t) becomes identical to the
classical Padé approximant [k-1/k]g(t) such that

f(t) - [k-1/k](t) = O(1Zk) (1-0).

The aim of this appendix is to give some properties of the functional d
(depending on Vi) such that

d((1-xt)-1) = e(Rx) = (k-1/k)g(t).

For conveniency reasons, we shall make use of the notation of duality

<L.g>
to denote the action of the linear functional L on the element g of a
vector space E. Thus L belongs to E*, the dual space of E, that is the
vector space of linear functionals on E. If T is a linear operator mapping
E into itself, the dual operator T* of T is the linear operator mapping E*
into itself, which is uniquely defined by

<T*(L), g>=<L, Tg>

VL € E* and Vg € E, [161].

Now, let E be the space of functions which are holomorphic in a
neighbourhood of the origin and let Vi be an arbitrary polynomial of

134
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degree k, with distincts zeros xi,...,xn of respective multiplicities ki,....kp

and ki+...+kp=k.

Let I(Vk) be the linear operator mapping g € E into its Hermite
interpolation polynomial Ry of degree at most k-1 defined by

g0)(x;) = Rg )(xi) fori=1,.,nandj=0,..ki-1.

Let Vi(t) = tX Vi(t-1) and let Uy be the reciprocal series of Vy (which

exists since V(0) # 0) formally defined by

Uk(t) Vi() = 1.
We set
Vik(X) = vo + VIX + ... + vixk
Uk(t) = ug + upt + ugt2 + ...

Then

Vi) = votk + vitk-1 4 . + v
and we have
ugvk = 1

UgVk-1 + vk =0

UogVo + U1V] + ...+ ukvk =0
Ujvp + uavy + ... + ug41vk =0

LI I I R e e e e T . L oo —

That is, with the convention that u; = 0 for j < 0
uovk = 1
VoUj + ViUj+l + ... + VkUj+k =0
We set

i
rix) = 3, ujxi-j

J=0

, 1# -k.

i20
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ri(x) =0 , i<0.
Lemma 1. Forall i20
k-1 i
xi - r.k(x) Vk(x) = -Z a}i) xJ with asi) = 3 vm Ui-k+m-j-
j=o m=0

The proofs of the results will be omitted. They can be found in [36].

Lemma 2. Forall i20
I(V) xi = xi - ri.x(x) Vi(x).

Lemma 3. I(V)(1-xt)-1 = (1-xt)-! (1-tk VE(x)/Vk(D).

Lemma 3 thus provides a new proof of a known result.
As we saw above
(k-1/k)e(t) = c(Rk(x)) = <c, (Vi)(1-xt)-1>,
Thus we have
(k-1/k)g(t) = <I*(Vik)(c), (1-xt)-1>.
Let us set

d(Vik) = I*(Vk)(c). (

*

)
We have

<d(VYy), xi> = <c, (Vx> = <c, xi - rj.k(x) Vi(x)> = d;.
Since

(k-1/k)f = <d(Vk), 1+xt+x2t2 + ... > =dg + djt + dat2 + ...
then the operator which maps the formal power series f into the power
series (k-1/k)f(t) can be understood as the mapping of E* into itself

which maps c¢ into d(Vk). This mapping, which depends on the
generating polynomial Vg, will be called the Padé-type operator ; from
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(+) we see that this operator is I*(Vy). If Vx does not depend on c then
I1*(Vy) is, as usual, linear. But for Padé approximats, since Vi is the
orthogonal polynomial of degree k with respect to the functional ¢, then
Vi depends on c and the linearity property only holds if the first 2k
moments of both functionals are the same since, then, both orthogonal
polynomials of degree k will be the same.

Let us now study some properties of d(Vg).
We obviously have the
Property 1 :
<d(Vy), xi> =<c, xi> fori = 0,...k-1.
Moreover if <c, xi Vk(x)> = 0 for i = 0,:..,k-] then the preceding equality

holds for i = 0,...,2k-1.
In both cases,Vm 2 k

<d(Vm), I(Vy)(1-xt)"1> = <c, I(Vg)(1-xt)-1>.
Property 2 : For all i2 0, <d(Vg), xi Vi(x)> = 0.

This property, which is a generalization of a property given in [17, p. 23]
when Vi has distinct simple zeros, can also be proved directly but the
proof is much longer.

As a corollary of property 2 we get a recursive formula for
computing the d;'s.

Corollary 1. For i2 0, we have

di+k = - (vodi + ... + vk-1 dis+k-1)/vk
with dij=cj fori = 0,....k-1.

Thus, for given coefficients of Vi, the computation of all the di's
only uses co,...,Ck-1. If Vx is the orthogonal polynomial of degree k with
respect to c, then the computation of Vi needs the knowledge of
Cos-++sC2k-1-

The di's can be used as approximations of the missing cj's, an idea
introduced in [80] (see also [25]), and we immediately have an
expression for the error.
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Property 3 : For all 120

ci-dj = <c, ri-k(x) Vi(x)>

with
k-1 .
i) ¢j
<C, Ti-k(Xx) Vk(x)> =¢cj + z aJ( ) €
j=o
(1) :
where the aj can be recursively computed by
(i+1)
ao = Uj.k+1Vo
i+1 i
ag ) = aj-g ) + Uj-k+1Vj for j=1,..,k-1
with
k-1
ag ) =0 j=0,..k-1.

As always in numerical analysis, this formula cannot be used in
practice to compute the error cij-d;j since its computation needs the
knowledge of the unkown coefficient c;. However it can be useful in
some cases. For example if

c(xi) = J:xi a(x)dx i20

where o is positive in [a,b], then 3B € [a,b] such that
ci-dj = co ri-k(B) Vk(B)
and bounds for ci-di can be obtained.

Let us now consider a series of functions of the form

f(t) = X cigi(t).

1=0

Let G be the generating function of the gi's defined by
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G(x,t) = 2, xigi(t).
i=o0
As above we formally have
f(t) = c(G(x,1)).
Let Vi be an arbitrary polynomial of degree k and let Ry be the Hermite
interpolation polynomial of G(.,t) at the zeros of Vy. We shall define the
Padé-type approximant (k-1/k)f(t) of f as
(k-1/k)p(t) = c(Rk(x)).

Usually (k-1/k)f(t) is not any more a rational function but we still have

f(y - (k-1/k)(1) = O(gk(1))

which means that f(t) - (k-1/k)(t) = 3, digi(t).
1=k

Let L be a linear functional transformation. We set
hi(p) = Lgi(1).

For example
hi) = [gePt giCdt.

If we set
F(p) = Lf(t)
it was proved in [37] that
(k-1/k)r(p) = L(k-1/k)¢(t)

if both approximants have the same generating polynomial Vi (which is
true in the Padé case since the functional ¢ remains unchanged).

If gi(t) = ti then we have
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1(Vi) L(1-xtyT = L(1-xt) 1(1-kVi(x)/V k(1))
and thus
(k-1/k)E(p) = <I*(Vi)(c), L(1-xt)-1> = doho(p) + d1h1(p) + d1h1(p) + ...
with the same dj's as before
d; = <d(Vy), xi> = <c, xi - rjx(x) Vi(x)>.

This result gives another justification of the definition used by van
Rossum [163] for Padé approximants to series of functions.

Since (k-1/k)r(p) approximates F(p), L-1(k-1/k)r(p) approximates
L-1F(p) = f(t). But

L-1(k-1/k)F(p) = (k-1/k)e(1).

Thus if the expansion of (k-1/k)r(p) is known, that of (k-1/k)g(t) is
obtained by replacing the hj(p) by the gi(t). This was the method used
by Longman for inverting the Laplace transform by means of Padé
approximants [128] or by Brezinski by means of Padé-type
approximants [16]. In these cases the summation of the infinite series
can be avoided by a special trick due to Longman and Sharir [129]. The
convergence was studied by van Iseghem [104] (see also [37]).
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Sylvester's and Schweins' identities in a vector space.

Let by,...,bn be elements of a vector space and let ajj be a scalar, Vi and
j- Then, Sylvester's identity is

b] ces bn aj2 .. aj,n-1 bl bn-l a2 ..a]1n
ail1 ... ain _| a1 ..apn-1
an.1,1...an-1,n! 1an-2,2...2n-2,n-1 an-2,1..-@n-2,n-1 ! 13n-1,2...2n-1
b2 .. bp aj] .. ag,n-1
a2 ... ain

an-2,2..-2n-2,n an-1,1...2n-1,n-1

Let now cy,...,.cn be scalars. Then Schweins' identity is

b1 .. bp C1 .. Cp-1 by .. bp-1 Cl .. Cp
ajl .. aln ait .. ai,n-1 ) a1l ... ai,n-1 aiy .. a1nq
an-1,1...4n-1,n an-2,1...2n-2,n-1 an-2,1...2n-2,n-1 an-1,1...an-1,n
bl ver bn
C1 « Cn all ---al,n-l
= 311 . a]n

an-1,1--.an-1,n-1
an-2,1...an-2,n

If ciy =1and c2 =... =¢y = 0, then Schweins' identity reduces to
Sylvester's.

Schweins' identity also holds if bj,...,byp are scalars and ci,...,cp elements
of a vector space. It reduces to Sylvester's if by =1, by = ... = by = 0. For a
proof of these identities see [23].

Let me give a quite simple proof of Sylvester's identity in the scalar case
which only requires to know that the determinant of a block triangular
matrix is equal to the product of the determinants of the blocks on its
diagonal.

41
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a, B, v, 8 are scalars

A is a square matrix n X n

a, ¢ are row vectors of dimension n
b,d are column vectors of dimension n.

We shall compute, by two different ways, the determinant

aa 0 B
b A O d
b 0 A d
Yy 0 ¢ &

Replacing the third row by its difference with the second one, we
get

a a 0B
b A 0 d
0 -AADO
y 0 ¢ 9

Replacing the second column by its sum with the third one leads to

= |Al

(o7 =Wy o~

<X TR
o P> e

O QP

0 B
0 d
A O
c o

< OOC Q
O TR
o0 pw
O o ™
> o o0

The second method for computing the initial determinant is as
follows. It is equal to the sum

aa 0P 0 a 0B

b A O d 0 A0 d]|_

00 Ad|T|b0Ad]|~T

0 0 ¢c & y 0 ¢ &
o a 0B a pO0oO
b A0 d AdoOO
00 Ad| D™ g g A"
0 0 ¢ o 0 8 v ¢

o a Ad' aBHbA

b A c 8| [A d Y ¢

which ends the proof.
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In the scalar case, Schweins' identity can be immediately obtained by
applying Sylvester's to

0 b1 w. bp-i bp
0O aj; .. aga-1  amn
0 an-2,1 .. &@n-2,n-1 ap-2,n
an-1,1 «. ap-1,n-1 an-1,n
0 c1 w. Cpn-1 Cn

fa—y

For determinantal identities, see [3].
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